THE EXISTENCE OF TRANSVERSE HOMOCLINIC POINTS IN THE SITNIKOV PROBLEM

被引:29
作者
DANKOWICZ, H
HOLMES, P
机构
[1] Department of Theoretical and Applied Mechanics, Cornell University, Ithaca
[2] Princeton University, Princeton
关键词
D O I
10.1006/jdeq.1995.1044
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using Melnikov's method we are able to prove the existence of transverse homoclinic orbits and therefore the existence of a horseshoe in a special restricted three-body problem. This analysis is an alternative to the one described by Moser (''Stable and Random Motions in Dynamical Systems,'' Princeton Univ. Press, Princeton, NJ, 1973), based on Sitnikov's original work (Dokl. Akad. Nauk. USSR 133, No. 2 (1960), 303-306), where the task is accomplished using a more direct construction of the horseshoe. (C) 1995 Academic Press, Inc.
引用
收藏
页码:468 / 483
页数:16
相关论文
共 8 条
[1]   CHAOTIC PERTURBATIONS OF KDV .1. RATIONAL SOLUTIONS [J].
BIRNIR, B .
PHYSICA D-NONLINEAR PHENOMENA, 1986, 19 (02) :238-254
[2]  
GUCKENHEIMER J, 1980, 1978 CIME LECT BRESS
[3]  
Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2
[4]   STABLE MANIFOLD THEOREM FOR DEGENERATE FIXED-POINTS WITH APPLICATIONS TO CELESTIAL MECHANICS [J].
MCGEHEE, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1973, 14 (01) :70-88
[5]  
Moser J, 1973, STABLE RANDOM MOTION
[6]  
Prudnikov A. P., 1986, INTEGRALS SERIES, V1
[7]  
SITNIKOV K, 1960, DOKL AKAD NAUK SSSR+, V133, P303
[8]   MELNIKOV METHOD AND TRANSVERSAL HOMOCLINIC POINTS IN THE RESTRICTED 3-BODY PROBLEM [J].
XIA, ZH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 96 (01) :170-184