EDGE WAVES ALONG PERIODIC COASTLINES

被引:37
作者
EVANS, DV
LINTON, CM
机构
[1] School of Mathematics, University of Bristol
关键词
D O I
10.1093/qjmam/46.4.643
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of edge waves travelling along a periodic coastline consisting of a straight and vertical cliff face from which protrudes an infinite number of identical thin barriers, each one extending throughout the water depth, is proved for sufficiently long barriers based on the linear theory of water waves. The water depth is assumed to be constant everywhere and for this reason these edge waves are fundamentally different from other edge waves known in water-wave theory which all rely on a varying bottom topography or a submerged obstacle for their support. The proof of existence uses the modified residue-calculus method and is constructive. The method provides a simple and efficient procedure for the determination of the trapped-mode frequencies.
引用
收藏
页码:643 / 656
页数:14
相关论文
共 15 条
[1]   TRAPPED MODES IN OPEN CHANNELS [J].
EVANS, DV ;
LINTON, CM .
JOURNAL OF FLUID MECHANICS, 1991, 225 :153-175
[2]   EDGE WAVES OVER A SHELF - FULL LINEAR-THEORY [J].
EVANS, DV ;
MCIVER, P .
JOURNAL OF FLUID MECHANICS, 1984, 142 (MAY) :79-95
[3]   TRAPPED ACOUSTIC MODES [J].
EVANS, DV .
IMA JOURNAL OF APPLIED MATHEMATICS, 1992, 49 (01) :45-60
[4]  
EVANS DV, IN PRESS Q J MECH AP
[6]  
HUTSON V, 1980, APPLICATIONS FUNCTIO
[7]  
LeBlond P. H., 1978, ELSEVIER OCEANOG SER, V20
[8]  
LINTON CM, IN PRESS WAVE MOTION
[9]  
Mittra R., 1971, ANAL TECHNIQUES THEO
[10]  
Mittra R., 1977, COMPUTER TECHNIQUES