NUMERICAL EXPERIENCE WITH LIMITED-MEMORY QUASI-NEWTON AND TRUNCATED NEWTON METHODS

被引:103
作者
Zou, X. [1 ]
Navon, I. M. [1 ,2 ]
Berger, M. [3 ]
Phua, K. H. [4 ]
Schlick, T. [5 ,6 ]
Le Dimet, F. X. [7 ]
机构
[1] Florida State Univ, Supercomp Computat Res Inst, Tallahassee, FL 32306 USA
[2] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
[3] Tel Aviv Univ, Div Appl Math, IL-69978 Tel Aviv, Israel
[4] Natl Univ Singapore, Dept Informat & Comp Sci, Singapore 1026, Singapore
[5] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[6] NYU, Dept Chem, New York, NY 10012 USA
[7] Grenoble Lab Modelizat & Calcul, F-38041 Grenoble, France
基金
美国国家科学基金会;
关键词
limited-memory quasi-Newton methods; truncated Newton methods; synthetic cluster functions; large-scale unconstrained minimization;
D O I
10.1137/0803029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Computational experience with several limited-memory quasi-Newton and truncated Newton methods for unconstrained nonlinear optimization is described. Comparative tests were conducted on a well-known test library [J. J. More, B. S. Garbow, and K. E. Hillstrom, ACM Trans. Math. Software, 7 (1981), pp. 17-41], on several synthetic problems allowing control of the clustering of eigenvalues in the Hessian spectrum, and on some large-scale problems in oceanography and meteorology. The results indicate that among the tested limited-memory quasi-Newton methods, the L-BFGS method [D. C. Liu and J. Nocedal, Math. Programming, 45 (1989), pp. 503-528] has the best overall performance for the problems examined. The numerical performance of two truncated Newton methods, differing in the inner-loop solution for the search vector, is competitive with that of L-BFGS.
引用
收藏
页码:582 / 608
页数:27
相关论文
共 38 条
[1]   FORTRAN SUBROUTINES FOR COMPUTING THE SQUARE ROOT CONVARIANCE FILTER AND SQUARE ROOT INFORMATION FILTER IN DENSE OR HESSENBERG FORMS REMARK [J].
BUCKLEY, A .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1989, 15 (03) :262-274
[2]   QN-LIKE VARIABLE STORAGE CONJUGATE GRADIENTS [J].
BUCKLEY, A ;
LENIR, A .
MATHEMATICAL PROGRAMMING, 1983, 27 (02) :155-175
[3]   BBVSCG - A VARIABLE-STORAGE ALGORITHM FOR FUNCTION MINIMIZATION [J].
BUCKLEY, A ;
LENIR, A .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1985, 11 (02) :103-119
[4]   COMBINED CONJUGATE-GRADIENT QUASI-NEWTON MINIMIZATION ALGORITHM [J].
BUCKLEY, AG .
MATHEMATICAL PROGRAMMING, 1978, 15 (02) :200-210
[5]  
Davidon W.C., 1959, ANL5990
[6]   TRUNCATED-NEWTON ALGORITHMS FOR LARGE-SCALE UNCONSTRAINED OPTIMIZATION [J].
DEMBO, RS ;
STEIHAUG, T .
MATHEMATICAL PROGRAMMING, 1983, 26 (02) :190-212
[7]   SOME NUMERICAL EXPERIMENTS WITH VARIABLE-STORAGE QUASI-NEWTON ALGORITHMS [J].
GILBERT, JC ;
LEMARECHAL, C .
MATHEMATICAL PROGRAMMING, 1989, 45 (03) :407-435
[8]  
GOLUB H. G., 1989, J HOPKINS SERIES MAT
[9]  
GRAMMELTVEDT A, 1969, MON WEA REV, V97, P387
[10]  
LEGLER DM, 1989, MON WEATHER REV, V117, P709, DOI 10.1175/1520-0493(1989)117<0709:OAOPOT>2.0.CO