Microprocessor-Based Sinusoidal Waveform Synthesis Using Walsh and Related Orthogonal Functions

被引:22
作者
Asumadu, Johnson A. [1 ]
Hoft, Richard G. [1 ]
机构
[1] Univ Missouri, Power Elect Res Ctr, 139 Elect Engn Bldg, Columbia, MO 65211 USA
关键词
D O I
10.1109/63.24908
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new method is described of eliminating harmonics in a pulsewidth-modulated waveform using Walsh and related functions that substitute linear algebraic equations for the nonlinear equations required in Fourier series harmonic elimination. In addition, the method is extended to synthesize periodic sinusoids from a fixed-voltage dc supply.
引用
收藏
页码:234 / 241
页数:8
相关论文
共 10 条
[1]  
Ahmed N., 1975, ORTHOGONAL TRANSFORM, P86
[2]  
Ahmed N., 1973, P S APPL WALSH FUNCT, P91
[3]  
Beauchamp K. G., 1984, APPL WALSH RELATED F
[4]   REPRESENTATIONS OF WALSH-FUNCTIONS [J].
CHIEN, TM .
IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 1975, 17 (03) :170-176
[5]   SIMPLIFIED ALGORITHMS BASED ON HAAR TRANSFORMS FOR SIGNAL RECOGNITION IN PROTECTIVE RELAYS [J].
FAKRUDDIN, DB ;
PARTHASARATHY, K .
PROCEEDINGS OF THE IEEE, 1985, 73 (05) :940-942
[6]   MICROPROCESSOR-BASED ALGORITHM FOR SYMMETRICAL-COMPONENTS CALCULATION [J].
FAKRUDDIN, DB ;
PARTHASARATHY, K ;
JENKINS, L ;
RAMANJANEYULU, KS .
PROCEEDINGS OF THE IEEE, 1983, 71 (12) :1463-1464
[7]   SYNTHESIS OF PERIODIC SINUSOIDS FROM WALSH WAVES [J].
KITAI, R .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 1975, 24 (04) :313-317
[8]   WALSH SPECTRAL-ANALYSIS [J].
MORETTIN, PA .
SIAM REVIEW, 1981, 23 (03) :279-291
[9]   WALSH SPECTRUM MEASUREMENT IN NATURAL, DYADIC, AND SEQUENCY ORDERING [J].
MUNIAPPAN, K ;
KITAI, R .
IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 1982, 24 (01) :46-49
[10]   NONRECURSIVE EQUATION FOR FOURIER-TRANSFORM OF A WALSH-FUNCTION [J].
SIEMENS, KH ;
KITAI, R .
IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 1973, EM15 (02) :81-83