NUMERICAL-SOLUTION OF SOBOLEV PARTIAL-DIFFERENTIAL EQUATIONS

被引:81
作者
EWING, RE [1 ]
机构
[1] OAKLAND UNIV,DEPT MATH,ROCHESTER,MI 48063
关键词
D O I
10.1137/0712028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:345 / 363
页数:19
相关论文
共 31 条
[1]  
Barenblatt GI., 1960, J APPL MATH MECH, V24, P1286, DOI [DOI 10.1016/0021-8928(60)90107-6, 10.1016/0021-8928(60)90107-6]
[2]   ON A THEORY OF HEAT CONDUCTION INVOLVING 2 TEMPERATURES [J].
CHEN, PJ .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1968, 19 (04) :614-&
[3]  
Coleman B. D., 1960, ARCH RATION MECH AN, V6, P355, DOI DOI 10.1007/BF00276168
[4]   A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type [J].
Crank, J ;
Nicolson, P .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 6 (3-4) :207-226
[6]  
dougla Jr J. D., 1961, NUMER MATH, V3, P92
[7]   ON THE RELATION BETWEEN STABILITY AND CONVERGENCE IN THE NUMERICAL SOLUTION OF LINEAR PARABOLIC AND HYPERBOLIC DIFFERENTIAL EQUATIONS [J].
DOUGLAS, J .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1956, 4 (01) :20-37
[8]  
Douglas J., 1962, NUMER MATH, V4, P41, DOI DOI 10.1007/BF01386295
[9]  
DOUGLAS J, 1961, ADV COMPUTERS, V2
[10]  
DOUGLAS J, 1958, T AM MATH SOC, V89, P484