CLASSICAL HAMILTONIAN-DYNAMICS OF RESCALED QUANTUM LEVELS

被引:7
作者
HAAKE, F
LENZ, G
机构
[1] Fachbereich Physik, Universitut-Gesamthochchule Essen, Essen
来源
EUROPHYSICS LETTERS | 1990年 / 13卷 / 07期
关键词
D O I
10.1209/0295-5075/13/7/001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Extending previous work of Pechukas and Yukawa, we map the eigenvalue problem of a quantum Hamiltonian H = g(A)(Ho + AV) onto the classical Hamiltonian dynamics of a fictitious gas. The rescaling factor g(A) is chosen so as to prevent the level density of H from thinning out indefinitely as A * 03; for the fictitious gas g(A) gives rise to a harmonic binding potential not present for g = 1, i.e. for Pechukas' gas. The confining potential makes equilibrium statistical mechanics applicable to the gas. The canonical ensemble of our gas turns out to be equivalent to the Gaussian ensembles of random Hermitian matrices. © 1990 IOP Publishing Ltd.
引用
收藏
页码:577 / 582
页数:6
相关论文
共 17 条
[1]  
Berry M. V., 1983, HOUCHES SESSION 36 1
[2]  
BOHIGAS G, 1984, LECTURE NOTES PHYSIC, V209
[3]   EXACT SOLUTION OF A ONE-DIMENSIONAL 3-BODY SCATTERING PROBLEM WITH 2-BODY AND OR 3-BODY INVERSE-SQUARE POTENTIALS [J].
CALOGERO, F ;
MARCHIORO, C .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (09) :1425-1430
[4]   RANDOM MATRIX-THEORY AS STATISTICAL-MECHANICS [J].
DIETZ, B ;
HAAKE, F .
EUROPHYSICS LETTERS, 1989, 9 (01) :1-6
[5]  
HAAKE F, 1990, IN PRESS QUANTUM SIG
[6]   SYMMETRY VERSUS DEGREE OF LEVEL REPULSION FOR KICKED QUANTUM-SYSTEMS [J].
KUS, M ;
SCHARF, R ;
HAAKE, F .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1987, 66 (01) :129-134
[7]  
KUS M, IN PRESS
[9]  
LENZ G, IN PRESS
[10]  
MEHTA ML, 1965, RANDOM MATRICES