A DYNAMICAL APPROACH TO FRACTIONAL BROWNIAN MOTION

被引:28
作者
Mannella, Riccardo [1 ]
Grigolini, Paolo [1 ,2 ,3 ]
West, Bruce J. [3 ]
机构
[1] Univ Pisa, Dipartimento Fis, I-56100 Pisa, Italy
[2] CNR, Inst Biofis, I-56127 Pisa, Italy
[3] Univ N Texas, Dept Phys, Denton, TX 76203 USA
关键词
D O I
10.1142/S0218348X94000077
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Herein we develop a dynamical foundation for fractional Brownian motion. A clear relation is established between the asymptotic behavior of the correlation function and diffusion in a dynamical system. Then, assuming that scaling is applicable, we establish a connection between diffusion (either standard or anomalous) and the dynamical indicator known as the Hurst coefficient. We argue on the basis of numerical simulations that although we have been able to prove scaling only for "Gaussian" processes, our conclusions may well apply to a wider class of systems. On the other hand, systems exist for which scaling might not hold, so we speculate on the possible consequences of the various relations derived in the paper on such systems.
引用
收藏
页码:81 / 94
页数:14
相关论文
共 21 条
  • [1] VELOCITY AUTOCORRELATIONS FOR HARD SPHERES
    ALDER, BJ
    WAINWRIGHT, TE
    [J]. PHYSICAL REVIEW LETTERS, 1967, 18 (23) : 988 - +
  • [2] DECAY OF VELOCITY AUTOCORRELATION FUNCTION
    ALDER, BJ
    WAINWRIGHT, TE
    [J]. PHYSICAL REVIEW A-GENERAL PHYSICS, 1970, 1 (01): : 18 - +
  • [3] DIFFUSION IN A 2-DIMENSIONAL PERIODIC POTENTIAL
    BAGCHI, B
    ZWANZIG, R
    MARCHETTI, MC
    [J]. PHYSICAL REVIEW A, 1985, 31 (02): : 892 - 896
  • [4] STANDARD FLUCTUATION-DISSIPATION PROCESS FROM A DETERMINISTIC MAPPING
    BIANUCCI, M
    MANNELLA, R
    FAN, XM
    GRIGOLINI, P
    WEST, BJ
    [J]. PHYSICAL REVIEW E, 1993, 47 (03): : 1510 - 1519
  • [5] BROWNIAN-MOTION GENERATED BY A 2-DIMENSIONAL MAPPING
    BIANUCCI, M
    BONCI, L
    TREFAN, G
    WEST, BJ
    GRIGOLINI, P
    [J]. PHYSICS LETTERS A, 1993, 174 (5-6) : 377 - 383
  • [6] THE NATURE OF ION AND WATER BARRIER CROSSINGS IN A SIMULATED ION CHANNEL
    CHIU, SW
    NOVOTNY, JA
    JAKOBSSON, E
    [J]. BIOPHYSICAL JOURNAL, 1993, 64 (01) : 98 - 108
  • [7] NONEQUILIBRIUM STATISTICAL-MECHANICS OF THE SPIN-1/2 VANDERWAALS MODEL .1. TIME EVOLUTION OF A SINGLE SPIN
    DEKEYSER, R
    LEE, MH
    [J]. PHYSICAL REVIEW B, 1991, 43 (10) : 8123 - 8130
  • [8] NONEQUILIBRIUM STATISTICAL-MECHANICS OF THE SPIN-1/2 VANDERWAALS MODEL .2. AUTOCORRELATION FUNCTION OF A SINGLE SPIN AND LONG-TIME TAILS
    DEKEYSER, R
    LEE, MH
    [J]. PHYSICAL REVIEW B, 1991, 43 (10): : 8131 - 8147
  • [9] Fedchenia I. I., 1992, PHYS REV A, V46, P4
  • [10] Feder J., 1988, FRACTALS