A RELATION BETWEEN AC SPECTRUM OF ERGODIC JACOBI MATRICES AND THE SPECTRA OF PERIODIC APPROXIMANTS

被引:63
作者
LAST, Y
机构
[1] Department of Physics, Technion-Israel Institute of Technology, Haifa
关键词
D O I
10.1007/BF02096752
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study ergodic Jacobi matrices on l2(Z), and prove a general theorem relating their a.c. spectrum to the spectra of periodic Jacobi matrices, that are obtained by cutting finite pieces from the ergodic potential and then repeating them. We apply this theorem to the almost Mathieu operator: (H(alpha,lambda,theta)u)(n) = u(n + 1) + u(n - 1) + lambda cos(2pialphan + theta)u(n), and prove the existence of a.c. spectrum for sufficiently small lambda, all irrational alpha's, and a.e. theta. Moreover, for 0 less-than-or-equal-to lambda < 2 and (Lebesgue) a.e. pair alpha, theta, we prove the explicit equality of measures: \sigma(ac)\ = Absolute value of sigma = 4 - 2lambda.
引用
收藏
页码:183 / 192
页数:10
相关论文
共 19 条
[1]  
[Anonymous], 1987, SCHRODINGER OPERATOR
[2]  
Aubry S., 1980, Annals of the Israel Physical Society, V3, P133
[3]   ALMOST PERIODIC SCHRODINGER-OPERATORS .2. THE INTEGRATED DENSITY OF STATES [J].
AVRON, J ;
SIMON, B .
DUKE MATHEMATICAL JOURNAL, 1983, 50 (01) :369-391
[4]   CANTOR SPECTRUM FOR THE ALMOST MATHIEU EQUATION [J].
BELLISSARD, J ;
SIMON, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 48 (03) :408-419
[5]   A METAL-INSULATOR-TRANSITION FOR THE ALMOST MATHIEU MODEL [J].
BELLISSARD, J ;
LIMA, R ;
TESTARD, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 88 (02) :207-234
[6]  
Bhatia R, 1987, PITMAN RES NOTES MAT, V162, pviii+129
[7]   GAUSS POLYNOMIALS AND THE ROTATION ALGEBRA [J].
CHOI, MD ;
ELLIOTT, GA ;
YUI, NK .
INVENTIONES MATHEMATICAE, 1990, 99 (02) :225-246
[8]   PURELY ABSOLUTELY CONTINUOUS-SPECTRUM FOR ALMOST MATHIEU OPERATORS [J].
CHULAEVSKY, V ;
DELYON, F .
JOURNAL OF STATISTICAL PHYSICS, 1989, 55 (5-6) :1279-1284
[9]   ALMOST PERIODIC SCHRODINGER-OPERATORS .3. THE ABSOLUTELY CONTINUOUS-SPECTRUM IN ONE DIMENSION [J].
DEIFT, P ;
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 90 (03) :389-411
[10]  
DELYON F, 1987, J PHYS A, V20, pL1