A NOTE ON THE INTERACTION BETWEEN SOLITARY WAVES IN A SINGULARLY-PERTURBED KORTEWEG-DEVRIES EQUATION

被引:15
作者
GRIMSHAW, R [1 ]
MALOMED, BA [1 ]
机构
[1] TEL AVIV UNIV,SCH MATH SCI,DEPT APPL MATH,IL-69978 TEL AVIV,ISRAEL
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1993年 / 26卷 / 16期
关键词
D O I
10.1088/0305-4470/26/16/024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For the fifth-order Korteweg-de Vries equation with a small parameter multiplying the highest-derivative term it is known that solitary waves are non-local, and are accompanied by co-propagating oscillatory waves of small amplitude and short wavelength. Here we report on some preliminary results for mutual interactions of these waves. First we impose a quantization condition upon a chain of solitary waves to obtain a periodic solution. Then we compute the interaction force between two neighbouring waves and hence estimate the conditions for a bound state to occur.
引用
收藏
页码:4087 / 4091
页数:5
相关论文
共 6 条
[1]   WEAKLY NONLOCAL SOLITONS FOR CAPILLARY-GRAVITY WAVES - 5TH-DEGREE KORTEWEG-DEVRIES EQUATION [J].
BOYD, JP .
PHYSICA D-NONLINEAR PHENOMENA, 1991, 48 (01) :129-146
[2]  
GORSHKOV KA, 1981, PHYSICA D, V1, P424
[3]  
GRIMSHAW R, 1992, UNPUB SIAM J APPL MA
[4]  
KARPMAN VI, 1981, PHYSICA D, V1, P142
[5]   BOUND SOLITONS IN THE NONLINEAR SCHRODINGER-GINZBURG-LANDAU EQUATION [J].
MALOMED, BA .
PHYSICAL REVIEW A, 1991, 44 (10) :6954-6957
[6]   STRUCTURAL STABILITY OF THE KORTEWEG-DEVRIES SOLITONS UNDER A SINGULAR PERTURBATION [J].
POMEAU, Y ;
RAMANI, A ;
GRAMMATICOS, B .
PHYSICA D, 1988, 31 (01) :127-134