A MULTILEVEL ALGORITHM FOR SOLVING A BOUNDARY INTEGRAL-EQUATION OF WAVE SCATTERING

被引:232
作者
LU, CC
CHEW, WC
机构
[1] Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois
关键词
FAST MULTIPOLE ALGORITHM; MULTILEVEL ALGORITHM; WAVE SCATTERING; BOUNDARY INTEGRAL EQUATION; NUMERICAL METHODS;
D O I
10.1002/mop.4650071013
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the solution of an integral equation using the conjugate gradient (CG) method, the most expensive part is the matrix-vector multiplication, requiring O(N2) floating-point operations. The fast multipole method (FMM) reduced the operation to O(N1-5). In this article we apply a multilevel algorithm to this problem and show that the complexity of a matrix-vector multiplication is proportional to N (log(N))2. (C) 1994 John Wiley & Sons, Inc.
引用
收藏
页码:466 / 470
页数:5
相关论文
共 11 条
[1]  
Cooley J.W., Tukey J.W., An Algorithm for the Machine Computation of Complex Fourier Series, Mathematics of Computation, 19, pp. 297-301, (1965)
[2]  
George A., Liu J.W., Computer Solution of Large Sparse Positive Definite Systems, (1981)
[3]  
Roklin V., Rapid Solution of Integral Equations of Classical Potential Theory, J. Comput. Phys., 60, pp. 187-207, (1985)
[4]  
Kalbasi K., Demarest K.R., pp. 254-263, (1991)
[5]  
Lin J.H., Chew W.C., (1993)
[6]  
Chew W.C., Lu C.C., The Use of Huygens' Equivalence Principle for Solving the Volume Integral Equation of Scattering, IEEE Trans. Antennas Propagat., 41 AP, 7, pp. 897-904, (1993)
[7]  
Brandt A., Multilevel Computations of Integral Transforms and Particle Interactions with Oscillatory Kernels, Comput. Phys. Commun., 65, pp. 24-38, (1991)
[8]  
Rokhlin V., Rapid Solution of Integral Equations of Scattering Theory in Two Dimensions, J. Comput. Phys., 86, pp. 414-439, (1990)
[9]  
Harrington R.F., Field Computation by Moment Methods, (1983)
[10]  
Chew W.C., Waves and Fields in Inhomogeneous Media, (1990)