BIOCOMPATIBILITY OF BIODEGRADABLE AND NONBIODEGRADABLE POLYMER-COATED STENTS IMPLANTED IN PORCINE PERIPHERAL ARTERIES

被引:37
作者
DESCHEERDER, IK
WILCZEK, KL
VERBEKEN, EV
VANDORPE, J
LAN, PN
SCHACHT, E
PIESSENS, J
DEGEEST, H
机构
[1] Department of Cardiology, University Hospital Gasthuisberg, Leuven, B-3000
[2] Department of Pathology, University Hospital Gasthuisberg, Leuven, B-3000
[3] Department of Organic Chemistry, Biomaterial Research Group, University of Ghent, Ghent, B-9000
关键词
ENDOVASCULAR STENTS; POLYMER; BIOCOMPATIBILITY; THROMBOGENICITY; NEOINTIMAL FOREIGN BODY REACTION;
D O I
10.1007/BF00239417
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose: To investigate the neointimal response to poly(organo)phosphazene- and amphiphilic polyurethane-coated, oversized, stainless steel stents implanted in porcine peripheral arteries. Methods: Nonarticulated, stainless steel, slotted-tube stents were coated with 1) a biodegradable poly(organo)phosphazene with aminoacid ester side, groups and 2) a biostable polyurethane prepared from an amphiphilic polyether, diphenyl methane-4,4'-diisocyanate and butane diol as chain extender. The stents were deployed in porcine peripheral arteries using an oversized balloon. Results: The neointimal response to amphiphilic polyurethane-coated stents was similar to the uncoated metallic stents. Poly(organo)phosphazene-coated stents, however, induced a severe histiolymphocytic and fibromuscular reaction resembling a foreign body reaction. Conclusions: Amphiphilic polyurethane is very promising as a biocompatible stent coating. Poly(organo)phosphazene, however, appears unsuitable for this purpose.
引用
收藏
页码:227 / 232
页数:6
相关论文
共 21 条
[1]  
Dotter C., Transluminally placed coilspring endoarterial tube grafts. Long-term patency in canine popliteal artery, Invest Radiol, 4, pp. 327-332, (1969)
[2]  
Bucx J.J., De Scheerder I.K., Beatt K., van den Brand M., Suryapranata H., de Feyter P.J., Serruys P.W., The importance of adequate anticoagulation to prevent early thrombosis after stenting of stenosed venous bypass grafts, Am Heart J, 121, 5, pp. 1389-1396, (1991)
[3]  
de Feyter P.J., De Scheerder I.K., van den Brand M., Laarman G.J., Suryapranata H., Serruys P.W., Emergency stenting for refractory acute coronary artery occlusion during coronary angioplasty, Am J Cardiol, 66, pp. 1147-1150, (1990)
[4]  
De Scheerder I.K., Strauss B.H., de Feyter P.J., Beatt K.J., Baur L.H., Wijns W., Heyndrix G.R., Suryapranata H., van den Brand M., Buis B., Serruys P.W., Stenting in venous bypass grafts: A new treatment modality for patients who are poor candidates for reintervention, Am Heart J, 123, 4, pp. 1046-1054, (1992)
[5]  
Strauss B.H., Serruys P.W., De Scheerder I.K., Tijssen J.G., Bertrand M.E., Puel J., Meier B., Kaufmann U., Stauffer J.C., Rickards A.F., Sigwart U., Relative risk analysis of angiographic predictors of restenosis within the coronary Wallstent, Circulation, 84, pp. 1636-1643, (1991)
[6]  
Crommen J., Vandorpe J., Schacht E., Degradable polyphosphazenes for biomedical applications, J Controlled Release, 24, pp. 167-180, (1993)
[7]  
Barth K., Eicker B., Bittner U., Marhoff P., The improvement of vessel quantification with image processing equipment for high resolution digital angiography, Computer-assisted radiology, pp. 220-225, (1989)
[8]  
Desmet W., Wille J.L., Vrolix M., van Lierde J., Byttebier G., Piessens J., Intra- and interobserver variability of a fast online quantitative coronary angiographic system, Int J Card Imaging, 9, pp. 249-256, (1993)
[9]  
Schwartz R.S., Murphy J.G., Edwards W.D., Holmes D.R., Bioabsorbable, drug-eluting, intracoronary stents: Design and future applications, : Coronary stents, pp. 135-154, (1992)
[10]  
Crommen J.H.L., Schacht E.H., Mense E.H.G., Biodegradable polymers. Synthesis of hydrolysis-sensitive poly(organo)-phosphazenes, Biomaterials, 13, pp. 511-520, (1992)