MULTICONFIGURATION THERMODYNAMIC INTEGRATION

被引:240
作者
STRAATSMA, TP
MCCAMMON, JA
机构
[1] Chemistry Department, University of Houston, Houston, TX 77204-5641
关键词
D O I
10.1063/1.461148
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A modified thermodynamic integration technique is presented to obtain free energy differences from molecular dynamics simulations. In this multiconfiguration thermodynamic integration technique, the commonly employed single configuration (slow growth) approximation is not made. It is shown, by analysis of the sources of error, how the multiconfiguration variant of thermodynamic integration allows for a soundly based assessment of the statistical error in the evaluated free energy difference. Since ensembles of configurations are generated for each integration step, a statistical error can be evaluated for each integration step. By generating ensembles of different lengths, the statistical error can be equally distributed over the integration. This eliminates the difficult problem in single configuration thermodynamic integrations of determining the best rate of change of the Hamiltonian, which is usually based on equally distributing the free energy change. At the same time, this procedure leads to a more efficient use of computer time by providing the possibility of added accuracy from separate calculations of the same Hamiltonian change. The technique is applied to a simple but illustrative model system consisting of a monatomic solute in aqueous solution. In a second example, a combination of multiconfiguration thermodynamic integration and thermodynamic perturbation is used to obtain the potentials of mean force for rotation of the sidechain dihedral angles for valine and threonine dipeptides with restrained backbones in aqueous solution.
引用
收藏
页码:1175 / 1188
页数:14
相关论文
共 29 条
[1]  
[Anonymous], 1987, DYNAMICS PROTEINS NU
[2]   FREE-ENERGY CALCULATIONS BY COMPUTER-SIMULATION [J].
BASH, PA ;
SINGH, UC ;
LANGRIDGE, R ;
KOLLMAN, PA .
SCIENCE, 1987, 236 (4801) :564-568
[3]  
Berendsen H.J.C., 1983, NATO ASI SER B, P221
[4]   THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS [J].
BERENDSEN, HJC ;
GRIGERA, JR ;
STRAATSMA, TP .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6269-6271
[5]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[6]   THERMODYNAMICS AND QUANTUM CORRECTIONS FROM MOLECULAR-DYNAMICS FOR LIQUID WATER [J].
BERENS, PH ;
MACKAY, DHJ ;
WHITE, GM ;
WILSON, KR .
JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (05) :2375-2389
[7]   NEW MONTE-CARLO METHOD TO COMPUTE THE FREE-ENERGY OF ARBITRARY SOLIDS - APPLICATION TO THE FCC AND HCP PHASES OF HARD-SPHERES [J].
FRENKEL, D ;
LADD, AJC .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (07) :3188-3193
[8]   MONTE-CARLO SIMULATION OF DIFFERENCES IN FREE-ENERGIES OF HYDRATION [J].
JORGENSEN, WL ;
RAVIMOHAN, C .
JOURNAL OF CHEMICAL PHYSICS, 1985, 83 (06) :3050-3054
[9]   EFFECT OF HYDRATION ON THE STRUCTURE OF AN SN2 TRANSITION-STATE [J].
JORGENSEN, WL ;
BUCKNER, JK .
JOURNAL OF PHYSICAL CHEMISTRY, 1986, 90 (19) :4651-4654
[10]   USE OF STATISTICAL PERTURBATION-THEORY FOR COMPUTING SOLVENT EFFECTS ON MOLECULAR-CONFORMATION - BUTANE IN WATER [J].
JORGENSEN, WL ;
BUCKNER, JK .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6083-6085