QUEUES SOLVABLE WITHOUT ROUCHE THEOREM

被引:35
作者
NEUTS, MF
机构
关键词
D O I
10.1287/opre.27.4.767
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
The author presents a novel analysis of the steady-state probabilities of a class of infinite Markov chains. Markov chains of this type appear in the study of bulk queues and a variety of other stochastic models. Also given are algorithms that involve only real arithmetic and avoid the traditional analysis based on Rouche's theorem.
引用
收藏
页码:767 / 781
页数:15
相关论文
共 16 条
[2]  
Cinlar E., 1969, ADV APPL PROBAB, V1, P123, DOI 10.2307/1426216
[3]  
DEB RJ, 1972, OPTIMAL CONTROL BATC
[4]  
Hunter J.J., 1969, ADV APPL PROBAB, V1, P188, DOI [10.1017/s0001867800037058, DOI 10.1017/S0001867800037058]
[5]  
Moran P.A.P., 1954, AUST J APPL SCI, V5, P116
[6]  
NAIR SS, 1972, SANKHYA SER A, V34, P17
[7]  
Neuts M. F., 1975, LIBER AMICORUM PROF, P173
[8]   M-G-1 QUEUE WITH SEVERAL TYPES OF CUSTOMERS AND CHANGE-OVER TIMES [J].
NEUTS, MF .
ADVANCES IN APPLIED PROBABILITY, 1977, 9 (03) :604-644
[9]   MOMENT FORMULAS FOR MARKOV RENEWAL BRANCHING-PROCESS [J].
NEUTS, MF .
ADVANCES IN APPLIED PROBABILITY, 1976, 8 (04) :690-711
[10]   SOME EXPLICIT FORMULAS FOR STEADY-STATE BEHAVIOR OF QUEUE WITH SEMI-MARKOVIAN SERVICE TIMES [J].
NEUTS, MF .
ADVANCES IN APPLIED PROBABILITY, 1977, 9 (01) :141-157