MEAN QUADRATIC VARIATIONS AND FOURIER ASYMPTOTICS OF SELF-SIMILAR MEASURES

被引:49
作者
LAU, KS
WANG, JR
机构
[1] Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, 15260, PA
来源
MONATSHEFTE FUR MATHEMATIK | 1993年 / 115卷 / 1-2期
关键词
D O I
10.1007/BF01311213
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the mean quadratic variation of a self-similar measure mu under certain open set condition exhibits asymptotic periodicity. Through a generalized Wiener's Tauberian Theorem, we obtain some new identities and equivalences of the mean quadratic variation of a bounded measure nu and its Fourier average H(alpha) (T; nu) = = 1/T(n-alpha) integral absolute-value-of x less-than-or-equal-to T \nu(x)\2dx (0 less-than-or-equal-to alpha less-than-or-equal-to n). They are used to sharpen some recent results of Strichartz concerning the asymptotic behavior of H(alpha) (T; mu) as T --> infinity, where mu is the self-similar measure as above. In the development some results concerning the open set condition are also obtained.
引用
收藏
页码:99 / 132
页数:34
相关论文
共 21 条
[1]  
[Anonymous], 1991, INTRO PROBABILITY TH
[2]   AN N-DIMENSIONAL WIENER - PLANCHEREL FORMULA [J].
BENEDETTO, J ;
BENKE, G ;
EVANS, W .
ADVANCES IN APPLIED MATHEMATICS, 1989, 10 (04) :457-487
[3]   THE SPHERICAL WIENER-PLANCHEREL FORMULA AND SPECTRAL ESTIMATION [J].
BENEDETTO, JJ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (04) :1110-1130
[4]  
BENKE G, IN PRESS J MATH ANAL
[5]   WIENER TRANSFORMATION ON FUNCTIONS WITH BOUNDED AVERAGES [J].
CHEN, YZ ;
LAU, KS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 108 (02) :411-421
[6]  
Falconer, 1985, GEOMETRY FRACTAL SET
[7]   Some properties of fractional integrals I [J].
Hardy, GH ;
Littlewood, JE .
MATHEMATISCHE ZEITSCHRIFT, 1928, 27 :565-606
[8]  
Heil C., 1990, THESIS U MARYLAND
[9]  
HU TY, 1990, MATH P CAMBRIDGE PHI, V108, P91
[10]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747