CHROMOSOMES AND MICROEVOLUTIONARY PROCESSES

被引:27
作者
CAPANNA, E
REDI, CA
机构
[1] Dipartimento di Biologia Animale e dell’Uomo, Università di Roma La Sapienza, Roma, I-00161
[2] Dipartimento di Biologia Animale, Università di Pavia, Pavia, I-27100
来源
BOLLETTINO DI ZOOLOGIA | 1994年 / 61卷 / 04期
关键词
CHROMOSOMES; SPECIATION; MAMMALS; MUS;
D O I
10.1080/11250009409355897
中图分类号
Q95 [动物学];
学科分类号
071002 ;
摘要
The role of chromosomal rearrangement in microevolutionary processes is discussed, considering numerous aspects of the complex mechanisms of chromosomal speciation. The different degrees of chromosome-derived subfertility, a consequence of the different kinds of structural heterozygosites in the inter-racial hybrids, are discussed with reference to the effectiveness of the postmating reproductive barrier. A ''non meiotic'' view of the reproductive fitness of the Robertsonian heterozygotes and homozygotes is proposed. It is based on the possibility that Robertsonian fusion, and chromosomal structural rearrangement in general, may alter the internal topography of interphasic nucleus. Consequent upon any such change would be an alteration in the collocation of the gene clusters in the nuclear domains programmed for their regular function. It is claimed that these considerations explain the selective advantage that the new homokaryotype must have over the non-rearranged type for the new chromosomal variant to be fixed and maintained within a panmyctic population. Also discussed are the role of the demographic factors involved in chromosomal speciation and the molecular mechanisms responsible for the chromosomal rearrangement. An alloperipatric model of chromosomal speciation of seems not to conflict with the ''geographical'' speciation principle of Mayr, and to be fully justified in terms of biological theory.
引用
收藏
页码:285 / 294
页数:10
相关论文
共 71 条
[1]  
Baker R.J., Bickham J.W., Spéciation by monobrachial centric fusion, Proc. Natl. Acad. Sei.Usa, 83, pp. 2845-2848, (1986)
[2]  
Bickham J.W., Baker R.J., Canalization model of chromosomal evolution, Bull. Carnegie Mus. Nat. Hist., 13, pp. 74-80, (1979)
[3]  
Capanna E., Robertsonian numerical variation in animal speciation: Mus musculus, an emblematic model, Mechanisms of Speciation, pp. 155-157, (1982)
[4]  
Capanna E., Concluding remarks. Mus domesticus and Sorex araneus faced: Two spéciation models compared, The Cytogenetics of the Sorex Araneus Group and Related Topics. Proceedings of the ISACC’s Second International Meeting. Mém. Soc. Vaudoise Sei. Nat., 19, pp. 141-151, (1989)
[5]  
Capanna E., Civitelli M.V., Cristaldi M., Chromosomal rearrangements, reproductive isolation and spéciationin mammals. The case of Mus musculus, Boll. Zool., 44, pp. 213-246, (1977)
[6]  
Capanna E., Corti M., Nascetti G., Role of contact areas in chromosomal spéciation of the European long-tailed house mouse (Mus musculus domesticus), Boll. Zool., 52, pp. 97-119, (1985)
[7]  
Capanna E., Redi C.A., Valeri S., Gendli G., New Robertsonian chromosomes in a natural hybrid zone between two chromosomal races of Mus domesticus, Rend. Fis. Accad. Lincei, S, 9, 5, pp. 269-276, (1994)
[8]  
Capanna E., Gropp A., Winking H., Civitelli M.V., Noack G., Robertsonian metacentric in the mouse, Chromosoma, 58, pp. 341-353, (1976)
[9]  
Carson H.L., Spéciationas a major reorganisation of polygenic balance, Models of spéciation, pp. 411-433, (1982)
[10]  
Corti M., Ciabatti M.C., The structure of a chromosomal hybrid zone of house mice (Mus domesticus) in Central Italy: Cytogenetic analysis. Z. Zool-syst, Evolutionforsch., 28, pp. 277-288, (1990)