A NUMERICAL APPROACH TO THE INFINITE HORIZON PROBLEM OF DETERMINISTIC CONTROL-THEORY

被引:114
作者
FALCONE, M
机构
[1] Univ di Roma, Rome, Italy, Univ di Roma, Rome, Italy
关键词
D O I
10.1007/BF01442644
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
CONTROL SYSTEMS
引用
收藏
页码:1 / 13
页数:13
相关论文
共 17 条
[1]  
Aubin JP., 1984, DIFFERENTIAL INCLUSI, DOI DOI 10.1007/978-3-642-69512-4
[2]  
CRANDALL MG, 1984, MATH COMPUT, V43, P1, DOI 10.1090/S0025-5718-1984-0744921-8
[3]   SOME PROPERTIES OF VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
EVANS, LC ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :487-502
[4]   VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :1-42
[5]   APPROXIMATE SOLUTIONS OF THE BELLMAN EQUATION OF DETERMINISTIC CONTROL-THEORY [J].
DOLCETTA, IC ;
ISHII, H .
APPLIED MATHEMATICS AND OPTIMIZATION, 1984, 11 (02) :161-181
[6]   ON A DISCRETE APPROXIMATION OF THE HAMILTON-JACOBI EQUATION OF DYNAMIC-PROGRAMMING [J].
DOLCETTA, IC .
APPLIED MATHEMATICS AND OPTIMIZATION, 1983, 10 (04) :367-377
[7]  
FALCONE M, 1986, UNPUB
[8]  
FALCONE M, 1985, 1985 P INT S NUM AN
[9]  
Fleming W.H., 1975, DETERMINISTIC STOCHA
[10]  
Glowinski R, 1976, ANAL NUMERIQUE INEQU, V1