A SYMMETRICAL FUNCTION GENERALIZATION OF THE CHROMATIC POLYNOMIAL OF A GRAPH

被引:204
作者
STANLEY, RP
机构
[1] Department of Mathematics, Massachusetts Institute of Technology, Cambridge
基金
美国国家科学基金会;
关键词
D O I
10.1006/aima.1995.1020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a finite graph G with d vertices we define a homogeneous symmetric function X(G) of degree d in the variables x(1), x(2), .... If we set x(1) = ... x(n) = 1 and all other x(i) = 0, then we obtain chi(G)(n), the chromatic polynomial of G evaluated at n. We consider the expansion of X(G) in terms of various symmetric function bases. The coefficients in these expansions are related to partitions of the vertices into stable subsets, the Mobius function of the lattice of contractions of G, and the structure of the acyclic orientations of G. The coefficients which arise when X(G) is expanded in terms of elementary symmetric functions are particularly interesting, and for certain graphs are related to the theory of Hecke algebras and Kazhdan-Lusztig polynomials. (C) 1995 Academic Press, Inc.
引用
收藏
页码:166 / 194
页数:29
相关论文
共 34 条
[1]   THE CHROMATIC DIFFERENCE SEQUENCE OF A GRAPH [J].
ALBERTSON, MO ;
BERMAN, DM .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1980, 29 (01) :1-12
[2]  
[Anonymous], 1985, INTERVAL ORDERS INTE
[3]  
[Anonymous], 1993, J AM MATH SOC
[4]  
BIRKHOFF GD, ANN MATH, V14, P42
[5]   BROKEN CIRCUIT COMPLEXES - FACTORIZATIONS AND GENERALIZATIONS [J].
BJORNER, A ;
ZIEGLER, GM .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1991, 51 (01) :96-126
[6]  
Brylawski T., 1981, European Journal of Combinatorics, V2, P107
[7]   BROKEN-CIRCUIT COMPLEX [J].
BRYLAWSKI, T .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 234 (02) :417-433
[8]   DECOMPOSITION FOR COMBINATORIAL GEOMETRIES [J].
BRYLAWSKI, TH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 171 (SEP) :235-282
[9]   ENUMERATION OF PAIRS OF SEQUENCES BY RISES, FALLS AND LEVELS [J].
CARLITZ, L ;
SCOVILLE, R ;
VAUGHAN, T .
MANUSCRIPTA MATHEMATICA, 1976, 19 (03) :211-243
[10]   TABLES OF SYMMETRIC FUNCTIONS - PART 1 [J].
DAVID, FN ;
KENDALL, MG .
BIOMETRIKA, 1949, 36 (3-4) :431-449