ON THE STRUCTURE OF UNITARY CONFORMAL FIELD-THEORY .1. EXISTENCE OF CONFORMAL BLOCKS

被引:29
作者
FELDER, G [1 ]
FROHLICH, J [1 ]
KELLER, G [1 ]
机构
[1] SWISS FED INST TECHNOL, CH-8093 ZURICH, SWITZERLAND
关键词
D O I
10.1007/BF01219658
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:417 / 463
页数:47
相关论文
共 50 条
[1]   RATIONALITY IN CONFORMAL FIELD-THEORY [J].
ANDERSON, G ;
MOORE, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 117 (03) :441-450
[2]  
Baxter R, 2016, EXACTLY SOLVED MODEL
[3]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[4]  
BIEN F, 1988, STRUCTURE REPRESENTA
[5]  
Birman Joan S., 1974, ANN MATH STUD, V82
[6]   ON BRAID GROUPS [J].
BIRMAN, JS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1969, 22 (01) :41-&
[7]  
Bogoliubov NN, 1975, INTRO AXIOMATIC QUAN
[8]  
BUCHHOLZ D, 1988, CURRENT ALGEBRA CIRC
[9]   4-POINT CORRELATION-FUNCTIONS AND THE OPERATOR ALGEBRA IN 2D CONFORMAL INVARIANT THEORIES WITH CENTRAL CHARGE C LESS-THAN-OR-EQUAL-TO 1 [J].
DOTSENKO, VS ;
FATEEV, VA .
NUCLEAR PHYSICS B, 1985, 251 (5-6) :691-734
[10]   CONFORMAL ALGEBRA AND MULTIPOINT CORRELATION-FUNCTIONS IN 2D STATISTICAL-MODELS [J].
DOTSENKO, VS ;
FATEEV, VA .
NUCLEAR PHYSICS B, 1984, 240 (03) :312-348