ON THE EVALUATION OF ONE-DIMENSIONAL CAUCHY PRINCIPAL VALUE INTEGRALS BY RULES BASED ON CUBIC SPLINE INTERPOLATION

被引:15
作者
DAGNINO, C
SANTI, E
机构
[1] Facoltà di Ingegneria, Università di L'Aquila, L'Aquila
关键词
AMS Subject Classifications: 65D30; 65D32; Cauchy principla value integrals; cubic spline interpolation; product integration;
D O I
10.1007/BF02242921
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this note we consider the numerical evaluation of one dimensional Cauchy principal value integrals of the form {Mathematical expression} by rules obtained by "subtracting out" the singularity and then applying product quadratures based on cubic spline interpolation at equally spaced nodes. Convergence results are established for Hölder continuous functions of order, μ, 0<μ≤1, and asymptotic rates are obtained for functions f≠Ck[a, b], k=1, 2, 3 or 4. Some comparisons with other methods and numerical examples are also given. © 1990 Springer-Verlag.
引用
收藏
页码:267 / 276
页数:10
相关论文
共 28 条
[1]   PRODUCT INTEGRATION OF LOGARITHMIC SINGULAR INTEGRANDS BASED ON CUBIC-SPLINES [J].
ALAYLIOGLU, A ;
LUBINSKY, DS ;
EYRE, D .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 11 (03) :353-366
[2]  
[Anonymous], [No title captured]
[3]   ON THE CONVERGENCE OF SOME CUBIC SPLINE INTERPOLATION SCHEMES [J].
BEATSON, RK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (04) :903-912
[4]  
Cassels J.W.S., 1957, INTRO DIOPHANTINE AP
[5]  
Criscuolo G., 1986, RIC MAT, V35, P45
[6]   PRODUCT INTEGRATION OF PIECEWISE CONTINUOUS INTEGRANDS BASED ON CUBIC SPLINE INTERPOLATION AT EQUALLY SPACED NODES [J].
DAGNINO, C ;
ORSI, AP .
NUMERISCHE MATHEMATIK, 1988, 52 (04) :459-466
[7]  
DAGNINO C, IN PRESS NUMER MATH
[8]  
DAVIS PJ, 1984, METHODS NUMERICAL IN
[9]  
DEBOOR CR, 1984, CONVERGENCE CUBIC SP
[10]  
DOMSTA J, 1976, STUD MATH, V8, P223