DISCRETE STOCHASTIC-MODELS FOR TRAFFIC FLOW

被引:414
作者
SCHRECKENBERG, M
SCHADSCHNEIDER, A
NAGEL, K
ITO, N
机构
[1] UNIV COLOGNE, INST THEORET PHYS, D-50937 COLOGNE, GERMANY
[2] UNIV COLOGNE, ZENTRUM PARALLELES RECHNEN, D-50923 COLOGNE, GERMANY
[3] JAPAN ATOM ENERGY RES INST, TOKAI, IBARAKI 31911, JAPAN
关键词
D O I
10.1103/PhysRevE.51.2939
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate a probabilistic cellular automaton model which has been introduced recently. This model describes single-lane traffic flow on a ring and generalizes the asymmetric exclusion process models. We study the equilibrium properties and calculate the so-called fundamental diagrams (flow versus density) for parallel dynamics. This is done numerically by computer simulations of the model and by means of an improved mean-field approximation which takes into account short-range correlations. For cars with a maximum velocity of 1, the simplest nontrivial approximation gives the exact result. For higher velocities, the analytical results, obtained by iterated application of the approximation scheme, are in excellent agreement with the numerical simulations. © 1995 The American Physical Society.
引用
收藏
页码:2939 / 2949
页数:11
相关论文
共 41 条
[1]  
[Anonymous], 1993, STAT PHYS
[2]   MEAN-FIELD (N,M)-CLUSTER APPROXIMATION FOR LATTICE MODELS [J].
BENAVRAHAM, D ;
KOHLER, J .
PHYSICAL REVIEW A, 1992, 45 (12) :8358-8370
[3]   KINETICS OF CLUSTERING IN TRAFFIC FLOWS [J].
BENNAIM, E ;
KRAPIVSKY, PL ;
REDNER, S .
PHYSICAL REVIEW E, 1994, 50 (02) :822-829
[4]   SELF-ORGANIZATION AND A DYNAMIC TRANSITION IN TRAFFIC-FLOW MODELS [J].
BIHAM, O ;
MIDDLETON, AA ;
LEVINE, D .
PHYSICAL REVIEW A, 1992, 46 (10) :R6124-R6127
[5]   PHASE-TRANSITIONS IN 2-DIMENSIONAL TRAFFIC-FLOW MODELS [J].
CUESTA, JA ;
MARTINEZ, FC ;
MOLERA, JM ;
SANCHEZ, A .
PHYSICAL REVIEW E, 1993, 48 (06) :R4175-R4178
[6]   AN EXACT SOLUTION OF A ONE-DIMENSIONAL ASYMMETRIC EXCLUSION MODEL WITH OPEN BOUNDARIES [J].
DERRIDA, B ;
DOMANY, E ;
MUKAMEL, D .
JOURNAL OF STATISTICAL PHYSICS, 1992, 69 (3-4) :667-687
[7]   EXACT SOLUTION OF A 1D ASYMMETRIC EXCLUSION MODEL USING A MATRIX FORMULATION [J].
DERRIDA, B ;
EVANS, MR ;
HAKIM, V ;
PASQUIER, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (07) :1493-1517
[8]   EXACT CORRELATION-FUNCTIONS IN AN ASYMMETRIC EXCLUSION MODEL WITH OPEN BOUNDARIES [J].
DERRIDA, B ;
EVANS, MR .
JOURNAL DE PHYSIQUE I, 1993, 3 (02) :311-322
[9]   LATTICE-GAS AUTOMATA FOR THE NAVIER-STOKES EQUATION [J].
FRISCH, U ;
HASSLACHER, B ;
POMEAU, Y .
PHYSICAL REVIEW LETTERS, 1986, 56 (14) :1505-1508
[10]   LOCAL-STRUCTURE THEORY FOR CELLULAR AUTOMATA [J].
GUTOWITZ, HA ;
VICTOR, JD ;
KNIGHT, BW .
PHYSICA D, 1987, 28 (1-2) :18-48