GIANT MAGNETOSTRICTION MATERIALS

被引:163
作者
KOON, NC
WILLIAMS, CM
DAS, BN
机构
[1] Naval Research Laboratory, Washington
关键词
D O I
10.1016/0304-8853(91)90819-V
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
One of the significant technical developments in magnetism of the early 1970's was the discovery of a new class of rare earth intermetallic compounds, the RFe2 Laves phases, which were found to exhibit room temperature magnetostrictive strains approaching 2 x 10(-3), an order of magnitude larger than any previously known. Since that time both the fundamental and technical properties of these materials have been of intense interest, and they remain the subject of active research even today. The large strains available are useful in such applications as production of high amplitude, low frequency sound waves in water, certain types of strain gages, vibration compensation and compensation for temperature induced strains in large laser mirrors. Because the performance of these materials depends critically on such fundamental properties as the magnetic anisotropy, magnetization and grain orientation of the material, there has been a very strong interplay between fundamental studies and applications. In this article we briefly review the fundamental magnetic and magnetostrictive properties of the RFe2 Laves phases, focusing especially on the complex behavior of the anisotropy and the success of crystal field theory in explaining it. We also present neutron measurements of magnetic excitation spectra and explain how they provide an understanding of the remarkable success of mean field theory for these systems.
引用
收藏
页码:173 / 185
页数:13
相关论文
共 30 条
[1]  
Akulov N.S, 1928, Z PHYS, V52, P389
[2]   MAGNETIC-ANISOTROPY AND SPIN ROTATIONS IN HOXTB1-XFE2 CUBIC LAVES COMPOUNDS [J].
ATZMONY, U ;
BAUMINGER, ER ;
LEBENBAUM, D ;
DARIEL, MP ;
OFER, S ;
NOWIK, I .
PHYSICAL REVIEW LETTERS, 1972, 28 (04) :244-+
[3]  
CALLEN E, 1969, P METALLIC MAGNETOAC, P75
[4]   PRESENT STATUS OF TEMPERATURE DEPENDENCE OF MAGNETOCRYSTALLINE ANISOTROPY AND L(L+1)/2 POWER LAW [J].
CALLEN, HB ;
CALLEN, E .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1966, 27 (08) :1271-&
[5]  
Clark A. E., 1980, Ferromagnetic materials. A handbook on the properties of magnetically ordered substances, vol.1, P531, DOI 10.1016/S1567-2719(80)01010-4
[6]  
Clark A.E., 1976, AIP CONF P, V29, P192, DOI [10.1063/1.30580, DOI 10.1063/1.30580]
[7]  
Clark A.E., 1972, AIP C P, V5, P1498
[8]   MAGNETOSTRICTION OF RARE EARTH-FE-2 LAVES PHASE COMPOUNDS [J].
CLARK, AE ;
ABBUNDI, R ;
SAVAGE, HT ;
MCMASTERS, OD .
PHYSICA B & C, 1977, 86 (JAN-M) :73-74
[9]   ANOMALOUS THERMAL EXPANSION AND MAGNETOSTRICTION OF SINGLE-CRYSTAL DYSPROSIUM [J].
CLARK, AE ;
DESAVAGE, BF ;
BOZORTH, R .
PHYSICAL REVIEW, 1965, 138 (1A) :A216-&
[10]   GIANT ROOM-TEMPERATURE MAGNETOSTRICTIONS IN TBFE2 AND DYFE2 [J].
CLARK, AE ;
BELSON, HS .
PHYSICAL REVIEW B, 1972, 5 (09) :3642-&