DESCRIBING FUNCTIONS - ATOMIC DECOMPOSITIONS VERSUS FRAMES

被引:346
作者
GROCHENIG, K
机构
[1] Department of Mathematics U-9, University of Connecticut, Storrs, 06269-3009, CT
来源
MONATSHEFTE FUR MATHEMATIK | 1991年 / 112卷 / 01期
关键词
D O I
10.1007/BF01321715
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The theory of frames and non-orthogonal series expansions with respect to coherent states is extended to a general class of spaces, the so-called coorbit spaces. Special cases include wavelet expansions for the Besov-Triebel-Lizorkin spaces, Gabor-type expansions for modulation spaces, and sampling theorems for wavelet and Gabor transforms.
引用
收藏
页码:1 / 41
页数:41
相关论文
共 38 条
[1]  
[Anonymous], 1983, MONOGRAPHS MATH
[3]  
BASTIAANS MJ, 1981, SPIE, V373, P49
[4]   HEISENBERG PROOF OF THE BALIAN LOW THEOREM [J].
BATTLE, G .
LETTERS IN MATHEMATICAL PHYSICS, 1988, 15 (02) :175-177
[5]  
BOHNKE G, TREILLIS ONDELLETTES
[6]  
Coifman R. R., 1980, ASTE RISQUE, V77, P12
[7]   THE WAVELET TRANSFORM, TIME-FREQUENCY LOCALIZATION AND SIGNAL ANALYSIS [J].
DAUBECHIES, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (05) :961-1005
[8]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[9]   PAINLESS NONORTHOGONAL EXPANSIONS [J].
DAUBECHIES, I ;
GROSSMANN, A ;
MEYER, Y .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (05) :1271-1283
[10]  
DAUBECHIES I, 1988, COMMUN PUR APPL MATH, V16, P151