A GLOBAL PERSPECTIVE ON MULTIVARIATE CALIBRATION METHODS

被引:7
作者
LANG, PM [1 ]
KALIVAS, JH [1 ]
机构
[1] IDAHO STATE UNIV, DEPT CHEM, POCATELLO, ID 83209 USA
关键词
GENERALIZED INVERSE; K-MATRIX ANALYSIS; P-MATRIX ANALYSIS; LEAST SQUARE; PRINCIPAL COMPONENT REGRESSION; PARTIAL LEAST SQUARES; CONTINUUM REGRESSION; BEER LAW;
D O I
10.1002/cem.1180070303
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper consists of two distinct but related parts. In the first part a geometric theory of generalized inverses is presented and a methodology based on this theory is developed and applied to solve the K-matrix and P-matrix forms of Beer's law. It is shown that most currently accepted and practiced methods for solving these forms of Beer's law are just special cases of this geometric theory of generalized inverses. In addition, this geometric theory is used to explain why the current methods work and why they fail. In the second part a general methodology that includes as special cases least squares, principal component regression, partial least squares 1 and 2, continuum regression plus a variety of other described and undescribed methodologies is presented and then applied to solve the P-matrix formulation of Beer's law. This general methodology, like the first, is also geometric in nature and relies on an understanding of projections. The main emphasis of this paper is one of perspective, which, if understood, provides the proper foundation for answering the general but extremely hard and possibly unanswerable question 'what is the best method?'.
引用
收藏
页码:153 / 163
页数:11
相关论文
共 9 条
[1]  
BENISRAEL A, 1974, GENERALIZED INVERSES
[2]  
Golub G.H., 1983, MATRIX COMPUTATIONS
[3]  
Jolliffe I., 2002, PRINCIPAL COMPONENT
[4]   RECENT DEVELOPMENTS IN MULTIVARIATE CALIBRATION [J].
KOWALSKI, BR ;
SEASHOLTZ, MB .
JOURNAL OF CHEMOMETRICS, 1991, 5 (03) :129-145
[5]  
Lancaster P., 1985, COMPUTER SCI APPL MA
[6]  
Lorber A., 1987, J CHEMOM, V1, P19
[8]  
McClure G.L., 1987, COMPUTERIZED QUANTIT
[9]   WHICH PRINCIPAL COMPONENTS TO UTILIZE FOR PRINCIPAL COMPONENT REGRESSION [J].
SUTTER, JM ;
KALIVAS, JH ;
LANG, PM .
JOURNAL OF CHEMOMETRICS, 1992, 6 (04) :217-225