MODEL SELECTION FOR EXTENDED QUASI-LIKELIHOOD MODELS IN SMALL SAMPLES

被引:221
作者
HURVICH, CM [1 ]
TSAI, CL [1 ]
机构
[1] UNIV CALIF DAVIS,GRAD SCH MANAGEMENT,DAVIS,CA 95616
关键词
AIC; AIC(C); C-P; DEVIANCE; KULLBACK-LEIBLER INFORMATION;
D O I
10.2307/2533006
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We develop a small sample criterion (AIC(c)) for the selection of extended quasi-likelihood models. In contrast to the Akaike information criterion (AIC), AIC(c) provides a more nearly unbiased estimator for the expected Kullback-Leibler information. Consequently, it often selects better models than AIC in small samples. For the Logistic regression model, Monte Carlo results show that AIC(c) outperforms AIC, Pregibon's (1979, Data Analytic Methods for Generalized Linear Models. Ph.D, thesis. University of Toronto) C*(p), and the C-p selection criteria of Hosmer et al. (1989, Biometrics 45, 1265-1270). Two examples are presented.
引用
收藏
页码:1077 / 1084
页数:8
相关论文
共 16 条
[1]  
Agresti A., 1990, CATEGORICAL DATA ANA
[2]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[3]  
Akaike H., 1992, 2 INT S INF THEOR, P267, DOI DOI 10.1007/978-1-4612-1694-0_15
[4]   RISK ANALYSIS OF THE SPACE-SHUTTLE - PRE-CHALLENGER PREDICTION OF FAILURE [J].
DALAL, SR ;
FOWLKES, EB ;
HOADLEY, B .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (408) :945-957
[6]   BEST SUBSETS LOGISTIC-REGRESSION [J].
HOSMER, DW ;
JOVANOVIC, B ;
LEMESHOW, S .
BIOMETRICS, 1989, 45 (04) :1265-1270
[7]   REGRESSION AND TIME-SERIES MODEL SELECTION IN SMALL SAMPLES [J].
HURVICH, CM ;
TSAI, CL .
BIOMETRIKA, 1989, 76 (02) :297-307
[8]  
JORGENSEN B, 1987, J ROY STAT SOC B MET, V49, P127
[9]   LONGITUDINAL DATA-ANALYSIS USING GENERALIZED LINEAR-MODELS [J].
LIANG, KY ;
ZEGER, SL .
BIOMETRIKA, 1986, 73 (01) :13-22
[10]  
McCullagh P., 1989, GEN LINEAR MODELS, DOI DOI 10.1007/978-1-4899-3242-6