COMPUTER MODELING OF PROTEIN-FOLDING - CONFORMATIONAL AND ENERGETIC ANALYSIS OF REDUCED AND DETAILED PROTEIN MODELS

被引:74
作者
MONGE, A
LATHROP, EJP
GUNN, JR
SHENKIN, PS
FRIESNER, RA
机构
[1] COLUMBIA UNIV,DEPT CHEM,NEW YORK,NY 10027
[2] COLUMBIA UNIV,CTR BIOMOLEC SIMULAT,NEW YORK,NY 10027
关键词
PROTEIN FOLDING; COMPUTER MODELING; POTENTIAL FUNCTIONS;
D O I
10.1006/jmbi.1995.0195
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recently we developed methods to generate low-resolution protein tertiary structures using a reduced model of the protein where secondary structure is specified and a simple potential based on a statistical analysis of the Protein Data Bank is employed. Here we present the results of an extensive analysis of a large number of detailed, all-atom structures generated from these reduced model structures. Following side-chain addition, minimization and simulated annealing simulations are carried out with a molecular mechanics potential including an approximate continuum solvent treatment. By combining reduced model simulations with molecular modeling calculations we generate energetically competitive, plausible misfolded structures which provide a more significant test of the potential function than current misfolded models based on superimposing the native sequence on the folded structures of completely different proteins. The various contributions to the total energy and their interdependence are analyzed in detail for many conformations of three proteins (myoglobin, the C-terminal fragment of the L7/L12 ribosomal protein, and the N-terminal domain of phage 434 repressor). Our analysis indicates that the all-atom potential performs reasonably well in distinguishing the native structure. It also reveals inadequacies in the reduced model potential, which suggests how this potential can be improved to yield greater accuracy: Preliminary results with an improved potential are presented.
引用
收藏
页码:995 / 1012
页数:18
相关论文
共 37 条
[1]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542
[2]   AN EMPIRICAL ENERGY FUNCTION FOR THREADING PROTEIN-SEQUENCE THROUGH THE FOLDING MOTIF [J].
BRYANT, SH ;
LAWRENCE, CE .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1993, 16 (01) :92-112
[3]   STRUCTURE-DERIVED HYDROPHOBIC POTENTIAL - HYDROPHOBIC POTENTIAL DERIVED FROM X-RAY STRUCTURES OF GLOBULAR-PROTEINS IS ABLE TO IDENTIFY NATIVE FOLDS [J].
CASARI, G ;
SIPPL, MJ .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 224 (03) :725-732
[4]   PROTEIN FOLDING - EVALUATION OF SOME SIMPLE RULES FOR THE ASSEMBLY OF HELICES INTO TERTIARY STRUCTURES WITH MYOGLOBIN AS AN EXAMPLE [J].
COHEN, FE ;
RICHMOND, TJ ;
RICHARDS, FM .
JOURNAL OF MOLECULAR BIOLOGY, 1979, 132 (03) :275-288
[5]   FOLDING PROTEIN ALPHA-CARBON CHAINS INTO COMPACT FORMS BY MONTE-CARLO METHODS [J].
COVELL, DG .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1992, 14 (03) :409-420
[6]   CONFORMATIONS OF FOLDED PROTEINS IN RESTRICTED SPACES [J].
COVELL, DG ;
JERNIGAN, RL .
BIOCHEMISTRY, 1990, 29 (13) :3287-3294
[7]   A MOLECULAR-DYNAMICS SIMULATION OF THE C-TERMINAL FRAGMENT OF THE L7/L12 RIBOSOMAL-PROTEIN IN SOLUTION [J].
DAGGETT, V ;
LEVITT, M .
CHEMICAL PHYSICS, 1991, 158 (2-3) :501-512
[8]   THE DEAD-END ELIMINATION THEOREM AND ITS USE IN PROTEIN SIDE-CHAIN POSITIONING [J].
DESMET, J ;
DEMAEYER, M ;
HAZES, B ;
LASTERS, I .
NATURE, 1992, 356 (6369) :539-542
[9]  
FARID H, 1992, Biophysical Journal, V61, pA350
[10]   GENERALIZED PROTEIN TERTIARY STRUCTURE RECOGNITION USING ASSOCIATIVE MEMORY HAMILTONIANS [J].
FRIEDRICHS, MS ;
GOLDSTEIN, RA ;
WOLYNES, PG .
JOURNAL OF MOLECULAR BIOLOGY, 1991, 222 (04) :1013-1034