RATIONAL RUNGE-KUTTA METHODS FOR SOLVING SYSTEMS OF ORDINARY DIFFERENTIAL-EQUATIONS

被引:102
作者
WAMBECQ, A
机构
关键词
D O I
10.1007/BF02252381
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
引用
收藏
页码:333 / 342
页数:10
相关论文
共 14 条
[1]  
[Anonymous], 1963, J AUSTR MATH SOC, DOI [DOI 10.1017/S1446788700027932, 10.1017/S1446788700027932]
[2]   IMPLICIT RUNGE-KUTTA PROCESSES [J].
BUTCHER, JC .
MATHEMATICS OF COMPUTATION, 1964, 18 (85) :50-&
[3]   ON ATTAINABLE ORDER OF RUNGE-KUTTA METHODS [J].
BUTCHER, JC .
MATHEMATICS OF COMPUTATION, 1965, 19 (91) :408-&
[4]   ESTIMATION OF THE TRUNCATION ERROR IN RUNGE-KUTTA AND ALLIED PROCESSES [J].
CURTIS, AR .
COMPUTER JOURNAL, 1965, 8 (01) :52-52
[5]  
GEAR CW, 1971, NUMERICAL INITIAL VA, P218
[6]   PADE TABLE AND ITS RELATION TO CERTAIN ALGORITHMS OF NUMERICAL-ANALYSIS [J].
GRAGG, WB .
SIAM REVIEW, 1972, 14 (01) :1-&
[7]  
Lambert J D, 1974, STIFF DIFFERENTIAL E, P171
[8]   ON NUMERICAL SOLUTION OF Y' = F(X Y) BY A CLASS OF FORMULAE BASED ON RATIONAL APPROXIMATION [J].
LAMBERT, JD ;
SHAW, B .
MATHEMATICS OF COMPUTATION, 1965, 19 (91) :456-&
[9]  
MERSON RH, 1957, P S DATA PROCESSING
[10]  
Pad? H., 1892, ANN SCI ECOLE NORM S, V9, P1