LINEAR-PROGRAMMING BRINGS MARITAL BLISS

被引:104
作者
VANDEVATE, JH
机构
关键词
D O I
10.1016/0167-6377(89)90041-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
引用
收藏
页码:147 / 153
页数:7
相关论文
共 12 条
[1]   STABLE MATCHING WITH PREFERENCES DERIVED FROM A PSYCHOLOGICAL MODEL [J].
BARTHOLDI, J ;
TRICK, MA .
OPERATIONS RESEARCH LETTERS, 1986, 5 (04) :165-169
[2]  
Black Duncan, 1958, THEORY COMMITTEES EL
[4]  
CAMERON K, COMMUNICATION
[5]   COLLEGE ADMISSIONS AND STABILITY OF MARRIAGE [J].
GALE, D ;
SHAPLEY, LS .
AMERICAN MATHEMATICAL MONTHLY, 1962, 69 (01) :9-&
[6]  
Garey Michael R., 1979, COMPUTERS INTRACTABI
[7]   EVERY FINITE DISTRIBUTIVE LATTICE IS A SET OF STABLE MATCHINGS FOR A SMALL STABLE MARRIAGE INSTANCE [J].
GUSFIELD, D ;
IRVING, R ;
LEATHER, P ;
SAKS, M .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1987, 44 (02) :304-309
[8]   AN EFFICIENT ALGORITHM FOR THE OPTIMAL STABLE MARRIAGE [J].
IRVING, RW ;
LEATHER, P ;
GUSFIELD, D .
JOURNAL OF THE ACM, 1987, 34 (03) :532-543
[9]   THE COMPLEXITY OF COUNTING STABLE MARRIAGES [J].
IRVING, RW ;
LEATHER, P .
SIAM JOURNAL ON COMPUTING, 1986, 15 (03) :655-667
[10]  
Knuth D., 1976, MARIAGES STABLES