NOVEL TEMPORAL BEHAVIOR OF A NONLINEAR DYNAMIC SYSTEM - THE COMPLETELY INELASTIC BOUNCING BALL

被引:134
作者
MEHTA, A [1 ]
LUCK, JM [1 ]
机构
[1] CENS, CEA, LAB INST RECH FONDAMENTALE, SERV PHYS THEOR, F-91191 GIF SUR YVETTE, FRANCE
关键词
D O I
10.1103/PhysRevLett.65.393
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a ball under the influence of gravity on a vibrating platform where the ball-platform collisions are completely inelastic. We present for the first time several remarkable features in the temporal behavior of the system; its phase space is divided into transmitting and absorbing regions, which are responsible for the abrupt termination of a period-doubling sequence and the onset of a locking regime, in which an appropriately defined winding number has intriguing scaling properties. © 1990 The American Physical Society.
引用
收藏
页码:393 / 396
页数:4
相关论文
共 11 条
[1]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[2]   CHAOTIC DYNAMICS OF A BOUNCING BALL [J].
EVERSON, RM .
PHYSICA D, 1986, 19 (03) :355-383
[3]  
Fermi E., 1949, PHYS REV, V75, P1169, DOI [10.1103/PhysRev.75.1169, DOI 10.1103/PHYSREV.75.1169]
[4]  
GUCKENHEIMER J, 1982, J SOUND VIB, V84, P173
[5]  
Lichtenberg A. J., 1980, Physica D, V1D, P291, DOI 10.1016/0167-2789(80)90027-5
[6]  
MEHTA A, 1990, IN PRESS CTR ETUDES
[7]   JUMPING PARTICLE MODEL - PERIOD DOUBLING CASCADE IN AN EXPERIMENTAL SYSTEM [J].
PIERANSKI, P .
JOURNAL DE PHYSIQUE, 1983, 44 (05) :573-578
[8]   JUMPING PARTICLE MODEL - A STUDY OF THE PHASE-SPACE OF A NON-LINEAR DYNAMICAL SYSTEM BELOW ITS TRANSITION TO CHAOS (+) [J].
PIERANSKI, P ;
KOWALIK, Z ;
FRANASZEK, M .
JOURNAL DE PHYSIQUE, 1985, 46 (05) :681-686
[9]  
PUSTYLNIKOV LD, 1978, T MOSCOW MATH SOC, V2, P1
[10]   SUPPRESSION OF PERIOD DOUBLING IN THE DYNAMICS OF A BOUNCING BALL [J].
WIESENFELD, K ;
TUFILLARO, NB .
PHYSICA D, 1987, 26 (1-3) :321-335