ON A NEW CHARACTERIZATION OF THE CLASSICAL ORTHOGONAL POLYNOMIALS

被引:10
作者
DETTE, H [1 ]
STUDDEN, WJ [1 ]
机构
[1] PURDUE UNIV,DEPT STAT,W LAFAYETTE,IN 47907
关键词
D O I
10.1016/0021-9045(92)90128-B
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give a new characterization of the classical orthogonal polynomials (Jacobi, Laguerre, and Hermite polynomials) by a special property of the sequences in their recurrence formula. The results also allow an easy derivation of the asymptotic distribution of the zeros of the classical orthogonal polynomials. © 1992.
引用
收藏
页码:3 / 17
页数:15
相关论文
共 14 条
[1]  
ABRAMOWITZ M, 1964, NBS APPLIED MATH SER, V55
[2]  
ALSALAM WA, 1990, NATO ADV SCI I C-MAT, V294, P1
[3]  
Chihara TS., 1978, INTRO ORTHOGONAL POL
[4]  
Feller W., 1966, INTRO PROBABILITY TH, V2
[6]   ON AN EXTREMAL PROBLEM OF FEJER [J].
LAU, TS ;
STUDDEN, WJ .
JOURNAL OF APPROXIMATION THEORY, 1988, 53 (02) :184-194
[7]   MOMENT INEQUALITIES [J].
LAU, TS .
STATISTICS & PROBABILITY LETTERS, 1989, 8 (01) :9-16
[8]   ASYMPTOTIC AVERAGE PROPERTIES OF ZEROS OF ORTHOGONAL POLYNOMIALS [J].
NEVAI, PG ;
DEHESA, JS .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1979, 10 (06) :1184-1192
[9]  
PERRON O, 1956, LEHRE KETTENBRUCHEN