TESSELLATING TRIMMED NURBS SURFACES

被引:83
作者
PIEGL, LA
RICHARD, AM
机构
[1] Department of Computer Science and Engineering, University of South Florida, Tampa, FL 33620, ENG 118
基金
美国国家科学基金会;
关键词
NURBS; TESSELLATION; VISUALIZATION;
D O I
10.1016/0010-4485(95)90749-6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
An algorithm for obtaining a piecewise planar approximation of a trimmed NURBS surface is presented. Given a model space tolerance epsilon, the algorithm triangulates the parameter space domain of the trimmed surface such that the 3D planar approximation, obtained by mapping 2D triangles onto the surface, deviates from the trimmed surface by no more than epsilon. The number of triangles computed in parameter space depends on the bounds of the second derivatives. A detailed discussion of the algorithm and a practical error analysis of the tessellation are provided.
引用
收藏
页码:16 / 26
页数:11
相关论文
共 19 条
[1]   FREE-FORM SOLID MODELING WITH TRIMMED SURFACE PATCHES [J].
CASALE, MS .
IEEE COMPUTER GRAPHICS AND APPLICATIONS, 1987, 7 (01) :33-43
[2]   A CONSTRAINED 2-DIMENSIONAL TRIANGULATION AND THE SOLUTION OF CLOSEST NODE PROBLEMS IN THE PRESENCE OF BARRIERS [J].
CLINE, AK ;
RENKA, RJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (05) :1305-1321
[3]  
DOLENC A, 1991, MATH SURFACES, V4, P1
[4]   DELAUNAY TRIANGULATION USING A UNIFORM GRID [J].
FANG, TP ;
PIEGL, LA .
IEEE COMPUTER GRAPHICS AND APPLICATIONS, 1993, 13 (03) :36-47
[6]  
Filip D., 1986, Computer-Aided Geometric Design, V3, P295, DOI 10.1016/0167-8396(86)90005-1
[7]  
Foley J. D., 1990, COMPUTER GRAPHICS PR
[8]  
LANE J, COMPUT GRAPH IMAGE P, V11, P290
[9]  
LUKEN WL, UNPUB RENDERING TRIM
[10]  
MILLER JR, 1986, CGA, V6, P37