RANDOM CELLULAR FROTHS IN SPACES OF ANY DIMENSION AND CURVATURE

被引:11
作者
ASTE, T
RIVIER, N
机构
[1] UNIV LONDON IMPERIAL COLL SCI & TECHNOL,BLACKETT LAB,LONDON SW7 2BZ,ENGLAND
[2] UNIV STRASBOURG 1,PHYS THEOR LAB,F-67084 STRASBOURG,FRANCE
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1995年 / 28卷 / 05期
关键词
D O I
10.1088/0305-4470/28/5/023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Froth is a random partition of a D-dimensional space by cells. This assembly of cells obeys two fundamental laws: Euler's relation and the condition of maximum vertex figure, imposed by geometry and by topological stability, respectively. These two conditions generate a set of relations between the variables that fully characterize the system topologically. The number of degrees of freedom of the system and a set of useful independent variables, the 'even valences', have been found. The influence of the space dimension and curvature on the range of variability of these valences is discussed and, up to D = 5, the regions in valence space corresponding to differently curved froths are calculated explicitly.
引用
收藏
页码:1381 / 1398
页数:18
相关论文
共 17 条
  • [1] Aboav D. A., 1970, Metallography, V3, P383, DOI 10.1016/0026-0800(70)90038-8
  • [2] BIGGS NL, 1975, ALGEBRAIC GRAPH THEO
  • [3] BOULIGAND Y, 1990, J PHYSIQUE COLL, V7, P35
  • [4] INFORMATION CAPACITY OF A PERCEPTRON
    BRUNEL, N
    NADAL, JP
    TOULOUSE, G
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (19): : 5017 - 5037
  • [5] Charvolin J., 1990, J PHYSIQUE COLL, V51, pC7, DOI 10.1051/jphyscol:1990707
  • [6] Coxeter H.S.M., 1973, REGULAR POLYTOPES
  • [7] Coxeter H. S. M., 1958, ILLINOIS J MATH, V2, P746
  • [8] NEW STRUCTURAL MODEL FOR AMORPHOUS TRANSITION-METAL SILICIDES, BORIDES, PHOSPHIDES AND CARBIDES
    GASKELL, PH
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 1979, 32 (1-3) : 207 - 224
  • [9] Kleman M., 1979, J PHYS LETT-PARIS, V40, P569, DOI [10.1051/jphyslet:019790040021056900, DOI 10.1051/JPHYSLET:019790040021056900]
  • [10] PESKKIN MA, 1991, PHYS REV LETT, V67, P1803