A LINEAR CONSTRUCTION FOR CERTAIN KERDOCK AND PREPARATA CODES

被引:81
作者
CALDERBANK, AR
HAMMONS, AR
KUMAR, PV
SLOANE, NJA
SOLE, P
机构
[1] HUGHES AIRCRAFT CO,CANOGA PK,CA 91304
[2] UNIV SO CALIF,INST COMMUN SCI,LOS ANGELES,CA 90089
[3] CNRS,F-06560 VALBONNE,FRANCE
关键词
D O I
10.1090/S0273-0979-1993-00426-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Nordstrom-Robinson, Kerdock, and (slightly modified) Preparata codes are shown to be linear over Z4, the integers mod 4. The Kerdock and Preparata codes are duals over Z4, and the Nordstrom-Robinson code is self-dual. All these codes are just extended cyclic codes over Z4. This provides a simple definition for these codes and explains why their Hamming weight distributions are dual to each other. First- and second-order Reed-Muller codes are also linear codes over Z4, but Hamming codes in general arc not, nor is the Golay code.
引用
收藏
页码:218 / 222
页数:5
相关论文
共 26 条
[1]   ON THE PREPARATA AND GOETHALS CODES [J].
BAKER, RD ;
VANLINT, JH ;
WILSON, RM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1983, 29 (03) :342-345
[2]   4-PHASE SEQUENCES WITH NEAR-OPTIMUM CORRELATION-PROPERTIES [J].
BOZTAS, S ;
HAMMONS, R ;
KUMAR, PV .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (03) :1101-1113
[3]  
BOZTAS S, 1990, THESIS U SO CALIFORN
[4]  
Brouwer A.E., 1989, DISTANCE REGULAR GRA
[5]  
CARLET C, 1989, LECT NOTES COMPUT SC, V388, P202, DOI 10.1007/BFb0019858
[6]   SELF-DUAL CODES OVER THE INTEGERS MODULO-4 [J].
CONWAY, JH ;
SLOANE, NJA .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1993, 62 (01) :30-45
[7]   ALTERNATING BILINEAR FORMS OVER GF(Q) [J].
DELSARTE, P ;
GOETHALS, JM .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1975, 19 (01) :26-50
[8]  
FORNEY GD, IN PRESS DIMACS SERI
[9]   NONLINEAR CODES DEFINED BY QUADRATIC-FORMS OVER GF(2) [J].
GOETHALS, JM .
INFORMATION AND CONTROL, 1976, 31 (01) :43-74
[10]   2 DUAL FAMILIES OF NONLINEAR BINARY CODES [J].
GOETHALS, JM .
ELECTRONICS LETTERS, 1974, 10 (23) :471-472