OPTIMAL REJECTION OF PERSISTENT DISTURBANCES, ROBUST STABILITY, AND MIXED SENSITIVITY MINIMIZATION

被引:87
作者
DAHLEH, MA [1 ]
PEARSON, JB [1 ]
机构
[1] RICE UNIV,DEPT ELECT & COMP ENGN,HOUSTON,TX 77251
关键词
MATHEMATICAL PROGRAMMING; LINEAR; --; Optimization;
D O I
10.1109/9.1288
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of optimal disturbance rejection of bounded persistent disturbances is solved in the general nonsquare case. The minimum value of the objective function can be obtained by solving a semi-infinite linear programming problem, and an iterative procedure for obtaining approximate solutions is introduced. Application of the l1-optimal problem to robustness is discussed. A mixed sensitivity problem is formulated and shown to guarantee good disturbance rejection in the presence of plant perturbations.
引用
收藏
页码:722 / 731
页数:10
相关论文
共 12 条
[1]   ON THE STABILIZATION OF NONLINEAR-SYSTEMS [J].
ANANTHARAM, V ;
DESOER, CA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1984, 29 (06) :569-572
[2]  
[Anonymous], 1973, FUNCTIONAL ANAL
[3]   L1-OPTIMAL FEEDBACK CONTROLLERS FOR MIMO DISCRETE-TIME-SYSTEMS [J].
DAHLEH, MA ;
PEARSON, JB .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1987, 32 (04) :314-322
[4]  
DAHLEH MA, 1986, JUN P ACC SEATTL
[5]  
DAHLEH MA, IN PRESS IEEE T AUTO
[6]  
Desoer C. A., 1975, FEEDBACK SYSTEMS INP
[7]  
DOYLE JC, 1983, 22ND P IEE C DEC CON, P109
[8]  
FRANCIS BA, 1987, COURSE H INFINITY CO
[9]  
Kailath, 1980, LINEAR SYSTEMS
[10]  
Luenberger David G., 1997, OPTIMIZATION VECTOR