CLONING, NUCLEOTIDE-SEQUENCE, AND TRANSCRIPTIONAL ANALYSIS OF THE NAD(P)-DEPENDENT CHOLESTEROL DEHYDROGENASE GENE FROM A NOCARDIA SP AND ITS HYPEREXPRESSION IN STREPTOMYCES SPP

被引:42
作者
HORINOUCHI, S
ISHIZUKA, H
BEPPU, T
机构
关键词
D O I
10.1128/AEM.57.5.1386-1393.1991
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
NAD(P)-dependent cholesterol dehydrogenases [NAD(P)-CDH], which allow easier quantification of cholesterol by means of directly measuring the A340 of NAD(P)H, are useful for clinical purposes. The amino acid sequences of the NH2 terminus and the fragments obtained by CNBr decomposition of the NAD(P)-CDH from a Nocardia sp. were determined for preparation of synthetic oligonucleotides as hybridization probes. A 4.4-kbp BamHI fragment hybridizing to these probes was cloned on pUC19 in Escherichia coli. The nucleotide sequence together with the determined amino acid sequences revealed that this enzyme consists of 364 amino acids (M(r), 39,792) and contains an NAD(P)-binding consensus sequence at its NH2-terminal portion. High-resolution S1 nuclease mapping suggested that in NAD(P)-CDH of both Nocardia and Streptomyces spp. transcription initiates at the adenine residue, which is the first position of the translational initiation triplet (AUG) of this protein. The S1 mapping experiments also showed that cholesterol-dependent regulation in the Nocardia sp. occurred at the level of transcription. In Streptomyces lividans containing the cloned fragment, however, this promoter was expressed constitutively. DNA manipulation of the cloned gene in E. coli, including the generation of a ribosome-binding sequence at an appropriate position by oligonucleotide-directed mutagenesis, led to production of this protein in a very large amount but in the enzymatically inactive form of inclusion bodies. On the other hand, a Streptomyces host-vector system was successfully used for producing 40 times as much enzymatically active NAD(P)-CDH as that produced by the original Nocardia sp.
引用
收藏
页码:1386 / 1393
页数:8
相关论文
共 30 条
[1]  
AKIBA T, 1990, Patent No. 18064
[2]  
AKIBA T, 1983, Patent No. 89200
[3]   CLONING AND ANALYSIS OF THE PROMOTER REGION OF THE ERYTHROMYCIN-RESISTANCE GENE (ERME) OF STREPTOMYCES-ERYTHRAEUS [J].
BIBB, MJ ;
JANSSEN, GR ;
WARD, JM .
GENE, 1986, 41 (2-3) :E357-E368
[4]   GENE-EXPRESSION IN STREPTOMYCES - CONSTRUCTION AND APPLICATION OF PROMOTER-PROBE PLASMID VECTORS IN STREPTOMYCES-LIVIDANS [J].
BIBB, MJ ;
COHEN, SN .
MOLECULAR & GENERAL GENETICS, 1982, 187 (02) :265-277
[5]   THE RELATIONSHIP BETWEEN BASE COMPOSITION AND CODON USAGE IN BACTERIAL GENES AND ITS USE FOR THE SIMPLE AND RELIABLE IDENTIFICATION OF PROTEIN-CODING SEQUENCES [J].
BIBB, MJ ;
FINDLAY, PR ;
JOHNSON, MW .
GENE, 1984, 30 (1-3) :157-166
[6]   RECOVERY OF DNA SEGMENTS FROM AGAROSE GELS [J].
CHEN, CW ;
THOMAS, CA .
ANALYTICAL BIOCHEMISTRY, 1980, 101 (02) :339-341
[7]   TRANSLATIONAL INITIATION IN PROKARYOTES [J].
GOLD, L ;
PRIBNOW, D ;
SCHNEIDER, T ;
SHINEDLING, S ;
SINGER, BS ;
STORMO, G .
ANNUAL REVIEW OF MICROBIOLOGY, 1981, 35 :365-403
[8]   COLONY HYBRIDIZATION - METHOD FOR ISOLATION OF CLONED DNAS THAT CONTAIN A SPECIFIC GENE [J].
GRUNSTEIN, M ;
HOGNESS, DS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1975, 72 (10) :3961-3965
[9]  
HOPWOOD DA, 1983, J GEN MICROBIOL, V129, P2257
[10]  
Hopwood DA, 1985, GENETIC MANIPULATION