FINITE-SIZE SCALING FOR POTTS MODELS IN LONG CYLINDERS

被引:9
作者
BORGS, C [1 ]
机构
[1] HARVARD UNIV,CAMBRIDGE,MA 02138
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(92)90583-W
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Using a recently developed method to rigorously control the finite-size behaviour in long cylinders near first-order phase transitions, I calculate the finite-size scaling of the first q + 1 eigenvalues of the transfer matrix of the q-state Potts model in a d-dimensional periodic box of volume L x ... x L x t (assuming that d greater-than-or-equal-to 2 and that q is sufficiently large). I find two simple eigenvalues lambda+/- corresponding to the trivial representation of the global symmetry and an (q - 1)-fold degenerate eigenvalue lambda(perpendicular-to) corresponding to the remaining irreducible representations of the global symmetry group. The finite-size scaling of the gap xi-1(L, beta) = log(lambda+/lambda(perpendicular-to) and of the gap xi(sym)-1(L, beta) = log(lambda+/lambda-) in the symmetric subspace, and their relation to the surface tension, as well as the finite-size scaling of the internal energy E(cyl)(L, beta) = -L-(d-1)d loglambda+/dbeta are discussed. As a final application, I discuss the finite-size scaling of the derivative of xi(L, beta). I prove that 1/nu(L) := log[-Ldxi-1(L, beta)/dbeta]beta=beta(t)(L)/log L converges to the renormalization group eigenvalue y(T) = d, if beta(t)(L) is chosen as the point where xi(sym)-1(L, beta) is minimal. I also propose other definitions of a finite-volume exponent nu(L) which should be more suitable for numerical considerations.
引用
收藏
页码:605 / 645
页数:41
相关论文
共 25 条
[1]  
[Anonymous], 1992, COMPUTATIONAL METHOD
[2]   POTTS MODEL AT CRITICAL-TEMPERATURE [J].
BAXTER, RJ .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1973, 6 (23) :L445-L448
[3]  
BERG AB, 1990, NUCL PHYS B S, V17, P194
[4]   A NUMERICAL STUDY OF FINITE-SIZE SCALING FOR 1ST-ORDER PHASE-TRANSITIONS [J].
BILLOIRE, A ;
LACAZE, R ;
MOREL, A .
NUCLEAR PHYSICS B, 1992, 370 (03) :773-796
[5]  
BILLOIRE A, 1990, MONTE CARLO METHODS
[6]   CRITICAL-BEHAVIOR OF THE TWO-DIMENSIONAL POTTS-MODEL WITH A CONTINUOUS NUMBER OF STATES - A FINITE SIZE SCALING ANALYSIS [J].
BLOTE, HWJ ;
NIGHTINGALE, MP .
PHYSICA A, 1982, 112 (03) :405-465
[7]   NEW METHOD TO DETERMINE 1ST-ORDER TRANSITION POINTS FROM FINITE-SIZE DATA [J].
BORGS, C ;
JANKE, W .
PHYSICAL REVIEW LETTERS, 1992, 68 (11) :1738-1741
[8]   FINITE-SIZE SCALING FOR POTTS MODELS [J].
BORGS, C ;
KOTECKY, R ;
MIRACLESOLE, S .
JOURNAL OF STATISTICAL PHYSICS, 1991, 62 (3-4) :529-551
[9]   FINITE-SIZE SCALING AND SURFACE-TENSION FROM EFFECTIVE ONE-DIMENSIONAL SYSTEMS [J].
BORGS, C ;
IMBRIE, JZ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 145 (02) :235-280
[10]   FINITE SIZE EFFECTS IN PHASE-TRANSITIONS [J].
BREZIN, E ;
ZINNJUSTIN, J .
NUCLEAR PHYSICS B, 1985, 257 (06) :867-893