FINITE-ELEMENT APPROXIMATION OF THE NONSTATIONARY NAVIER-STOKES PROBLEM .4. ERROR ANALYSIS FOR 2ND-ORDER TIME DISCRETIZATION

被引:755
作者
HEYWOOD, JG [1 ]
RANNACHER, R [1 ]
机构
[1] UNIV HEIDELBERG,W-6900 HEIDELBERG,GERMANY
关键词
D O I
10.1137/0727022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper provides an error analysis for the Crank-Nicolson method of time discretization applied to spatial discrete Galerkin approximations of the nonstationary Navier-Stokes equations. Second-order error estiamtes are proven locally in time under realistic assumptions about the regularly of the solution. For approximations of an exponentially stable solution, these local error estimates are extended uniformly in time as t → ∞.
引用
收藏
页码:353 / 384
页数:32
相关论文
共 13 条
[1]  
Baker G, 1976, GALERKIN APPROXIMATI
[2]  
BAKER GA, 1982, MATH COMPUT, V39, P339, DOI 10.1090/S0025-5718-1982-0669634-0
[3]  
GIRAULT V, 1980, LECTURE NOTES MATH, V749
[4]   FINITE-ELEMENT APPROXIMATION OF THE NONSTATIONARY NAVIER-STOKES PROBLEM .1. REGULARITY OF SOLUTIONS AND 2ND-ORDER ERROR-ESTIMATES FOR SPATIAL DISCRETIZATION [J].
HEYWOOD, JG ;
RANNACHER, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (02) :275-311
[5]   FINITE-ELEMENT APPROXIMATION OF THE NONSTATIONARY NAVIER-STOKES PROBLEM .3. SMOOTHING PROPERTY AND HIGHER-ORDER ERROR-ESTIMATES FOR SPATIAL DISCRETIZATION [J].
HEYWOOD, JG ;
RANNACHER, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (03) :489-512
[6]   FINITE-ELEMENT APPROXIMATION OF THE NONSTATIONARY NAVIER-STOKES PROBLEM .2. STABILITY OF SOLUTIONS AND ERROR-ESTIMATES UNIFORM IN TIME [J].
HEYWOOD, JG ;
RANNACHER, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (04) :750-777
[7]  
HEYWOOD JG, 1986, J REINE ANGEW MATH, V372, P1
[8]   ON THE SMOOTHING PROPERTY OF THE CRANK-NICOLSON SCHEME [J].
LUSKIN, M ;
RANNACHER, R .
APPLICABLE ANALYSIS, 1982, 14 (02) :117-135
[9]   FINITE-ELEMENT SOLUTION OF DIFFUSION-PROBLEMS WITH IRREGULAR DATA [J].
RANNACHER, R .
NUMERISCHE MATHEMATIK, 1984, 43 (02) :309-327
[10]  
Rannacher R., 1981, COMPUT METHOD APPL M, VV, P301