SYMMETRICAL MATRICES REPRESENTABLE BY WEIGHTED TREES OVER A CANCELLATIVE ABELIAN MONOID

被引:23
作者
BANDELT, HJ [1 ]
STEEL, MA [1 ]
机构
[1] UNIV BIELEFELD,ZENTRUM INTERDISZIPLINARE FORSCH,D-33615 BIELEFELD,GERMANY
关键词
TREES; 4-POINT CONDITION; ABELIAN MONOID; DISTANCE-HEREDITARY GRAPH;
D O I
10.1137/S0895480191201759
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The classical result that characterizes metrics induced by paths in a labeled tree having positive real edge weights is generalized to allow the edge weights to take values in any cancellative abelian monoid satisfying the additional requirement that x + x = y + y implies x = y. This includes the case of arbitrary real-valued edge weights, which applies to distance-hereditary graphs, thus yielding (unique) weighted tree representations for the latter.
引用
收藏
页码:517 / 525
页数:9
相关论文
共 7 条
[1]   DISTANCE-HEREDITARY GRAPHS [J].
BANDELT, HJ ;
MULDER, HM .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1986, 41 (02) :182-208
[2]   RECOGNITION OF TREE METRICS [J].
BANDELT, HJ .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1990, 3 (01) :1-6
[3]  
Barthelemy JP, 1991, TREES PROXIMITY REPR
[4]  
Buneman Peter, 1974, J COMBINATORIAL TH B, V17, P48
[5]  
Garey M. R., 1979, COMPUTERS INTRACTIBI
[6]  
HENDY MD, 1992, AUSTRAL J COMBIN, V6, P277
[7]   METRIC PROPERTIES OF CERTAIN CLIQUE GRAPHS [J].
HOWORKA, E .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1979, 27 (01) :67-74