TENSOR PROPAGATOR FOR ITERATIVE QUANTUM TIME EVOLUTION OF REDUCED DENSITY-MATRICES .2. NUMERICAL METHODOLOGY

被引:428
作者
MAKRI, N
MAKAROV, DE
机构
[1] School of Chemical Sciences, University of Illinois, Urbana, IL 61801
关键词
D O I
10.1063/1.469509
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In a recent Letter [Chem. Phys. Lett. 221, 482 (1994)], we demonstrated that the dynamics of reduced density matrices for systems in contact with dissipative harmonic environments can be obtained in an iterative fashion by multiplication of a propagator tensor. The feasibility of iterative procedures in reduced dimension spaces arises from intrinsic features of the dissipative influence functional in Feynman's path integral formulation of quantum dynamics. Specifically, the continuum of frequencies characteristic of broad condensed phase spectra disrupts phase coherence to a large extent, such that the dynamics of an augmented reduced density tensor becomes Markovian. In a preceding article [J. Chem. Phys. 102, 4600 (1995)] we examined in detail the formal properties of the tensor propagator. In the present paper we show that the tensor propagator can be further decomposed into a product of small rank tensors, resulting in an extremely simple and efficient numerical scheme that scales almost linearly with the dimension of the augmented reduced density tensor. Numerical application to a model electron transfer reaction is presented. © 1995 American Institute of Physics. © 1995 American Institute of Physics.
引用
收藏
页码:4611 / 4618
页数:8
相关论文
共 44 条
[1]  
BACIC Z, 1987, J CHEM PHYS, V86, P3065
[2]   HIGHLY EXCITED VIBRATIONAL LEVELS OF FLOPPY TRIATOMIC-MOLECULES - A DISCRETE VARIABLE REPRESENTATION - DISTRIBUTED GAUSSIAN-BASIS APPROACH [J].
BACIC, Z ;
LIGHT, JC .
JOURNAL OF CHEMICAL PHYSICS, 1986, 85 (08) :4594-4604
[3]   THEORETICAL METHODS FOR ROVIBRATIONAL STATES OF FLOPPY MOLECULES [J].
BACIC, Z ;
LIGHT, JC .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1989, 40 :469-498
[4]   ROLE OF NUCLEAR TUNNELING IN AQUEOUS FERROUS FERRIC ELECTRON-TRANSFER [J].
BADER, JS ;
KUHARSKI, RA ;
CHANDLER, D .
JOURNAL OF CHEMICAL PHYSICS, 1990, 93 (01) :230-236
[5]   DYNAMICS OF ACTIVATIONLESS REACTIONS IN SOLUTION [J].
BAGCHI, B ;
FLEMING, GR .
JOURNAL OF PHYSICAL CHEMISTRY, 1990, 94 (01) :9-20
[6]   A MONTE-CARLO APPROACH FOR THE REAL-TIME DYNAMICS OF TUNNELING SYSTEMS IN CONDENSED PHASES [J].
BEHRMAN, EC ;
JONGEWARD, GA ;
WOLYNES, PG .
JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (12) :6277-6281
[7]   DETERMINATION OF THE BOUND AND QUASI-BOUND STATES OF AR-HCL VANDERWAALS COMPLEX - DISCRETE VARIABLE REPRESENTATION METHOD [J].
CHOI, SE ;
LIGHT, JC .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (04) :2129-2145
[8]   OBTAINING LONG-TIME DYNAMICS IN THE SPECTROSCOPIC SPIN-BOSON MODEL VIA PATH INTEGRATION [J].
COALSON, RD .
JOURNAL OF CHEMICAL PHYSICS, 1991, 94 (02) :1108-1117
[9]   A SPIN BOSON MODEL FOR SPECTROSCOPY INVOLVING NONADIABATICALLY COUPLED POTENTIAL-ENERGY SURFACES [J].
COALSON, RD .
JOURNAL OF CHEMICAL PHYSICS, 1987, 86 (02) :995-1009
[10]   A NONEQUILIBRIUM GOLDEN-RULE FORMULA FOR ELECTRONIC-STATE POPULATIONS IN NONADIABATICALLY COUPLED SYSTEMS [J].
COALSON, RD ;
EVANS, DG ;
NITZAN, A .
JOURNAL OF CHEMICAL PHYSICS, 1994, 101 (01) :436-448