RIEMANN-STIELTJES APROXIMATIONS OF STOCHASTIC INTEGRALS

被引:73
作者
WONG, E
ZAKAI, M
机构
[1] College of Engineering, University of California, Berkeley, California
[2] Technion-Israel Institute of Technology, Faculty of Electrical Engineering, Haifa
来源
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE | 1969年 / 12卷 / 02期
关键词
D O I
10.1007/BF00531642
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the space C[0, 1] together with its Borel σ-algebra A and a Wiener measure P. Let Ω denote a point in C[0, 1] and let x(Ω, t) denote the coordinate process. Then, {x(Ω, t), tε[0, 1]} is a Wiener process, and stochastic integrals of the form {Mathematical expression} can be defined for a suitable class of φ{symbol}. In this paper we consider a sequence of Stieltjes integrals of the form {Mathematical expression} where {Ωn(Ω)} is a sequence of polygonal approximations to co. Conditions are found which ensure the quadratic-mean convergence of {In}, and the limit is expressed as the sum of the stochastic integral {Mathematical expression} and a correction term". © 1969 Springer-Verlag."
引用
收藏
页码:87 / &
相关论文
共 10 条
[1]  
[Anonymous], 1964, VESTNIK MOSKOV U 1
[2]  
Doob J. L., 1953, STOCHASTIC PROCESSES, V101
[3]  
Dynkin EB, 1965, MARKOV PROCESSES 1
[4]  
Levy P., 1948, PROCESSUS STOCHASTIQ
[5]  
Loeve M., 1977, PROBABILITY THEORY
[6]   REGULAR PROBABILITY MEASURES ON FUNCTION SPACE [J].
NELSON, E .
ANNALS OF MATHEMATICS, 1959, 69 (03) :630-643
[7]  
Prokhorov Y. V., 1956, THEOR PROBAB APPL, V1, P157, DOI DOI 10.1137/1101016
[8]  
Stratonovich R. L., 1966, SIAM J CONTROL, V4, P362, DOI [DOI 10.1137/0304028, 10.1137/0304028]
[9]   ON THE CONVERGENCE OF ORDINARY INTEGRALS TO STOCHASTIC INTEGRALS [J].
WONG, E ;
ZAKAI, M .
ANNALS OF MATHEMATICAL STATISTICS, 1965, 36 (05) :1560-1564
[10]  
Wong E., 1965, INT J ENGINEERING SC, V3, P213