GTP-BINDING MUTANTS OF RAB1 AND RAB2 ARE POTENT INHIBITORS OF VESICULAR TRANSPORT FROM THE ENDOPLASMIC-RETICULUM TO THE GOLGI-COMPLEX

被引:446
作者
TISDALE, EJ [1 ]
BOURNE, JR [1 ]
KHOSRAVIFAR, R [1 ]
DER, CJ [1 ]
BALCH, WE [1 ]
机构
[1] LA JOLLA CANC RES FDN, DEPT CELL & MOLEC BIOL, LA JOLLA, CA 92037 USA
关键词
D O I
10.1083/jcb.119.4.749
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
We have examined the role of ras-related rab proteins in transport from the ER to the Golgi complex in vivo using a vaccinia recombinant T7 RNA polymerase virus to express site-directed rab mutants. These mutations are within highly conserved domains involved in guanine nucleotide binding and hydrolysis found in ras and all members of the ras superfamily. Substitutions in the GTP-binding domains of rab1a and rab1b (equivalent to the ras 17N and 116I mutants) resulted in proteins which were potent trans dominant inhibitors of vesicular stomatitis virus glycoprotein (VSV-G protein) transport between the ER and cis Golgi complex. Immunofluorescence analysis indicated that expression of rab1b121I prevented delivery of VSV-G protein to the Golgi stack, which resulted in VSV-G protein accumulation in pre-Golgi punctate structures. Mutants in guanine nucleotide exchange or hydrolysis of the rab2 protein were also strong trans dominant transport inhibitors. Analogous mutations in rab3a, rab5, rab6, and H-ras did not inhibit processing of VSV-G to the complex, sialic acid containing form diagnostic of transport to the trans Golgi compartment. We suggest that at least three members of the rab family (rab1a, rab1b, and rab2) use GTP hydrolysis to regulate components of the transport machinery involved in vesicle traffic between early compartments of the secretory pathway.
引用
收藏
页码:749 / 761
页数:13
相关论文
共 78 条
[1]   THE GTP-BINDING PROTEIN YPT1 IS REQUIRED FOR TRANSPORT INVITRO - THE GOLGI-APPARATUS IS DEFECTIVE IN YPT1 MUTANTS [J].
BACON, RA ;
SALMINEN, A ;
RUOHOLA, H ;
NOVICK, P ;
FERRONOVICK, S .
JOURNAL OF CELL BIOLOGY, 1989, 109 (03) :1015-1022
[2]   GTP-BINDING YPT1 PROTEIN AND CA-2+ FUNCTION INDEPENDENTLY IN A CELL-FREE PROTEIN-TRANSPORT REACTION [J].
BAKER, D ;
WUESTEHUBE, L ;
SCHEKMAN, R ;
BOTSTEIN, D ;
SEGEV, N .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (01) :355-359
[3]   SMALL GTP-BINDING PROTEINS IN VESICULAR TRANSPORT [J].
BALCH, WE .
TRENDS IN BIOCHEMICAL SCIENCES, 1990, 15 (12) :473-477
[4]  
BALCH WE, 1986, J BIOL CHEM, V261, P4681
[5]  
BALCH WE, 1992, J BIOL CHEM, V267, P13053
[6]   RAS GENES [J].
BARBACID, M .
ANNUAL REVIEW OF BIOCHEMISTRY, 1987, 56 :779-827
[7]   MUTATIONAL ANALYSIS OF THE PUTATIVE EFFECTOR DOMAIN OF THE GTP-BINDING YPT1 PROTEIN IN YEAST SUGGESTS SPECIFIC REGULATION BY A NOVEL GAP ACTIVITY [J].
BECKER, J ;
TAN, TJ ;
TREPTE, HH ;
GALLWITZ, D .
EMBO JOURNAL, 1991, 10 (04) :785-792
[8]   CALCIUM AND GTP - ESSENTIAL COMPONENTS IN VESICULAR TRAFFICKING BETWEEN THE ENDOPLASMIC-RETICULUM AND GOLGI-APPARATUS [J].
BECKERS, CJM ;
BALCH, WE .
JOURNAL OF CELL BIOLOGY, 1989, 108 (04) :1245-1256
[9]   SEMI-INTACT CELLS PERMEABLE TO MACROMOLECULES - USE IN RECONSTITUTION OF PROTEIN-TRANSPORT FROM THE ENDOPLASMIC-RETICULUM TO THE GOLGI-COMPLEX [J].
BECKERS, CJM ;
KELLER, DS ;
BALCH, WE .
CELL, 1987, 50 (04) :523-534
[10]  
BOURNE HR, 1991, NATURE, V349, P117, DOI 10.1038/349117a0