REALISTIC QUANTUM STATES OF LIGHT WITH MINIMUM PHASE UNCERTAINTY

被引:50
作者
BANDILLA, A
PAUL, H
RITZE, HH
机构
[1] Zentralinst. fur Optik und Spektroskopie, Berlin
来源
QUANTUM OPTICS | 1991年 / 3卷 / 05期
关键词
D O I
10.1088/0954-8998/3/5/003
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Starting from a convenient measure for the phase uncertainty delta-phi, a rigorous solution to the variational problem in which (delta-phi)2 is minimized under the constraint that the mean photon number N is held fixed, was found. In an approximation valid for large values of N, closed-form expressions for both (delta-phi)2 and the variance of the photon number (DELTA-n)2 were obtained. In the final result, our approximation is very similar to an approximation scheme recently discussed by Summy and Pegg. The phase uncertainty for the phase optimized states is found to decrease as (N + 1)-1 with growing N.
引用
收藏
页码:267 / 282
页数:16
相关论文
共 18 条
  • [1] Pegg DT, Barnett SM, Unitary Phase Operator in Quantum Mechanics, Europhysics Letters (EPL), 6, 6, (1988)
  • [2] Barnett SM, Pegg DT, J. Mod. Opt., 36, 1, (1989)
  • [3] Pegg DT, Barnett SM, Phys. Rev., 39, 4, (1989)
  • [4] Loudon R, (1973)
  • [5] Dirac PAM, The Quantum Theory of the Emission and Absorption of Radiation, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 114, 767, (1927)
  • [6] Heitler W, (1954)
  • [7] Summy GS, Pegg DT, Opt. Commun., 77, 1, (1990)
  • [8] Bandilla A, Paul H, Laser-Verstärker und Phasenunschärfe, Annalen der Physik, 478, 7-8, (1969)
  • [9] Abramowitz M, Stegun IA, (1972)
  • [10] Magnus W, Oberhettinger F, Soni RP, (1966)