OPTIMALITY CONDITIONS FOR NON-FINITE VALUED CONVEX COMPOSITE FUNCTIONS

被引:45
作者
BURKE, JV [1 ]
POLIQUIN, RA [1 ]
机构
[1] UNIV ALBERTA,DEPT MATH,EDMONTON T6G 2G1,ALBERTA,CANADA
关键词
CONVEX COMPOSITE FUNCTIONS; 2ND-ORDER OPTIMALITY CONDITIONS; CONSTRAINT QUALIFICATION;
D O I
10.1007/BF01581075
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Burke (1987) has recently developed second-order necessary and sufficient conditions for convex composite optimization in the case where the convex function is finite valued. In this note we present a technique for reducing the infinite valued case to the finite valued one. We then use this technique to extend the results in Burke (1987) to the case in which the convex function may take infinite values. We conclude by comparing these results with those established by Rockafellar (1989) for the piecewise linear-quadratic case.
引用
收藏
页码:103 / 120
页数:18
相关论文
共 16 条
[1]   2ND-ORDER NECESSARY AND SUFFICIENT CONDITIONS FOR CONVEX COMPOSITE NDO [J].
BURKE, JV .
MATHEMATICAL PROGRAMMING, 1987, 38 (03) :287-302
[2]  
BURKE JV, 1991, SIAM J CONTROL OPTIM, V29
[3]  
Clarke F.H., 1983, OPTIMIZATION NONSMOO
[4]  
FLETCHER R, 1982, MATH PROGRAM STUD, V17, P67
[5]  
Fletcher R., 1981, PRACTICAL METHODS OP
[7]  
Madsen K., 1985, THESIS TU DENMARK LY
[8]  
OSBORNE MR, 1978, LECT NOTES MATH, V630, P115
[9]   PROTODIFFERENTIATION OF SUBGRADIENT SET-VALUED MAPPINGS [J].
POLIQUIN, RA .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1990, 42 (03) :520-532
[10]  
Powell M.J.D., 1983, APPROXIMATION THEORY, VIV, P187