COMPUTER-DYNAMICS AND SHADOWING OF CHAOTIC ORBITS

被引:24
作者
FRYSKA, ST
ZOHDY, MA
机构
[1] Center for Robotics and Advanced Automation, Oakland University, Rochester
关键词
D O I
10.1016/0375-9601(92)90719-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report results of digital integration of a piecewise linear system operating in a chaotic, parameter sensitive region, using different precisions of floating number representation in a digital computer. We compare these results to the "exact" closed form solution. Resulting discrepancies are explained by treating the computer as a deterministic system superimposing its dynamics on the dynamics of the investigated system. Good approximations of the true attractor are obtained by injecting controlled amounts of uniformly distributed random noise during digital integration of the system trajectories.
引用
收藏
页码:340 / 346
页数:7
相关论文
共 10 条
[1]   CHAOS AND CONTINUED FRACTIONS [J].
CORLESS, RM ;
FRANK, GW ;
MONROE, JG .
PHYSICA D, 1990, 46 (02) :241-253
[2]   Optimal shadowing and noise reduction [J].
Farmer, J.D. ;
Sidorowich, J.J. .
Physica D: Nonlinear Phenomena, 1991, 47 (03) :373-392
[3]  
FRYSKA ST, 1992, AM CONTROL C P
[4]  
Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2
[5]  
Lichtenberg A. J., 1983, REGULAR STOCHASTIC M
[6]  
MANELLA R, 1990, CONTEMP PHYS, V31, P179
[7]   COMPUTER ARITHMETIC, CHAOS AND FRACTALS [J].
PALMORE, J ;
HERRING, C .
PHYSICA D, 1990, 42 (1-3) :99-110
[8]   SHADOWING BY COMPUTABLE CHAOTIC ORBITS [J].
PALMORE, JI ;
MCCAULEY, JL .
PHYSICS LETTERS A, 1987, 122 (08) :399-402
[9]  
TOKUNAGA R, 1986, IEEE AWARD WINNING S
[10]  
1988, TURBO C REFERENCE GU