The gene encoding nucleoside diphosphate (NDP) kinase of Escherichia coli was identified by polymerase chain reaction using oligodeoxyribonucleotide primers synthesized on the basis of consensus sequences from Myxococcus xanthus and various eukaryotic NDP kinases. The gene (ndk), mapped at 54.2 min on the E. coli chromosome, was cloned and sequenced. The E. coli NDP kinase was found to consist of 143 amino acid residues that are 57, 45, 45, 42, 43, and 43 % identical to the M. xanthus, Dictyostelium discoideum, Drosophila melanogaster, mouse, rat, and human enzymes, respectively. The ndk gene appears to be in a monocistronic operon and, when cloned in a pUC vector, NDP kinase was overproduced at a level of approx. 25% of total cellular proteins. The protein could be labeled with [gamma-P-32]ATP and migrated at a 16.5 kDa when electrophoresed in SDS-polyacrylamide gel, which is in good agreement with the M(r) of the purified E. coli NDP kinase previously reported.