DECOUPLING AND KHINTCHINES INEQUALITIES FOR U-STATISTICS

被引:58
作者
DELAPENA, VH
机构
关键词
KHINTCHINES INEQUALITIES; U-STATISTICS; DECOUPLING;
D O I
10.1214/aop/1176989533
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we introduce a fairly general decoupling inequality for U-statistics. Let {X(i)} be a sequence of independent random variables in a measurable space (S, F), and let (X(i)} be an independent copy of {X(i)}. Let PHI(x) be any convex increasing function for x greater-than-or-equal-to 0. Let PI(ij) be families of functions of two variables taking (S x S) into a Banach space (D, parallel-to . parallel-to). If the f(ij) is-an-element-of PI(ij) are Bochner integrable and [GRAPHICS] then, under measurability conditions, [GRAPHICS] where f = (f(ij), 1 less-than-or-equal-to i not-equal j less-than-or-equal-to n) and PI = (PI(ij), 1 less-than-or-equal-to i not-equal j less-than-or-equal-to n). In the case where PI is a family of functions of two variables satisfying f(ij) = f(ji) and f(ij)(X(i), X(j)) = f(ij)(X(j), X(i)), the reverse inequality holds (with a different constant). As a corollary, we extend Khintchine's inequality for quadratic forms to the case of degenerate U-statistics. A new maximal inequality for degenerate U-statistics is also obtained. The multivariate extension is provided.
引用
收藏
页码:1877 / 1892
页数:16
相关论文
共 16 条
[1]  
Araujo A, 1980, CENTRAL LIMIT THEORE
[2]   INVERTIBILITY OF LARGE SUBMATRICES WITH APPLICATIONS TO THE GEOMETRY OF BANACH-SPACES AND HARMONIC-ANALYSIS [J].
BOURGAIN, J ;
TZAFRIRI, L .
ISRAEL JOURNAL OF MATHEMATICS, 1987, 57 (02) :137-224
[3]  
BURKHOLDER DL, 1983, C HARMONIC ANAL HONO
[4]  
DELAPENA VH, 1990, UNPUB ORDER MAGNITUD
[5]  
Dudley R.M, 1984, LECT NOTES MATH, P1
[6]   INVARIANCE-PRINCIPLES FOR SUMS OF BANACH-SPACE VALUED RANDOM ELEMENTS AND EMPIRICAL PROCESSES [J].
DUDLEY, RM ;
PHILIPP, W .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 62 (04) :509-552
[7]   COMPARISON OF MOMENTS FOR TANGENT SEQUENCES OF RANDOM-VARIABLES [J].
HITCZENKO, P .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 78 (02) :223-230
[8]   DECOUPLING INEQUALITIES FOR POLYNOMIAL CHAOS [J].
KWAPIEN, S .
ANNALS OF PROBABILITY, 1987, 15 (03) :1062-1071
[9]   DECOUPLING INEQUALITIES FOR MULTILINEAR FORMS IN INDEPENDENT SYMMETRICAL RANDOM-VARIABLES [J].
MCCONNELL, TR ;
TAQQU, MS .
ANNALS OF PROBABILITY, 1986, 14 (03) :943-954
[10]   DECOUPLING OF BANACH-VALUED MULTILINEAR FORMS IN INDEPENDENT SYMMETRICAL BANACH-VALUED RANDOM-VARIABLES [J].
MCCONNELL, TR ;
TAQQU, MS .
PROBABILITY THEORY AND RELATED FIELDS, 1987, 75 (04) :499-507