SUBEXPONENTIALITY OF THE PRODUCT OF INDEPENDENT RANDOM-VARIABLES

被引:272
作者
CLINE, DBH
SAMORODNITSKY, E
机构
[1] CORNELL UNIV,SCH OR IE,ITHACA,NY 14853
[2] TEXAS A&M UNIV,DEPT STAT,COLL STN,TX 77843
关键词
D O I
10.1016/0304-4149(94)90113-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Suppose X and P are independent nonnegative random variables. We study the behavior of P(XY>t), as t-->infinity, when X has a subexponential distribution. Particular attention is given to obtaining sufficient conditions on P(Y>t) for XP to have a subexponential distribution. The relationship between P(X>t) and P(XY>t) is further studied for the special cases where the former satisfies one of the extensions of regular variation.
引用
收藏
页码:75 / 98
页数:24
相关论文
共 31 条
[1]  
Athreya K., 1972, BRANCHING PROCESSES, DOI DOI 10.1007/978-3-642-65371-1
[2]   VONMISES, R CONDITION FOR DOMAIN OF ATTRACTION OF EXP (-E-CHI) [J].
BALKEMA, AA ;
HAAN, LD .
ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (04) :1352-&
[3]  
Berman S.M., 1992, ANN APPL PROBAB, V2, P481
[4]   EXTREME SOJOURNS OF DIFFUSION-PROCESSES [J].
BERMAN, SM .
ANNALS OF PROBABILITY, 1988, 16 (01) :361-374
[5]   SOJOURNS AND EXTREMES OF A DIFFUSION PROCESS ON A FIXED-INTERVAL [J].
BERMAN, SM .
ADVANCES IN APPLIED PROBABILITY, 1982, 14 (04) :811-832
[6]  
BINGHAM NH, 1989, ENCY MATH ITS APPLIC
[7]  
Borovkov AA, 1976, STOCHASTIC PROCESSES, DOI [10.1007/978-1-4612-9866-3, DOI 10.1007/978-1-4612-9866-3]
[8]   ON SOME LIMIT THEOREMS SIMILAR TO ARC-SIN LAW [J].
BREIMAN, L .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1965, 10 (02) :323-&
[9]  
CHISTYAKOV VP, 1964, THEOR PROBAB APPL, V98, P640
[10]   DEGENERACY PROPERTIES OF SUBCRITICAL BRANCHING PROCESSES [J].
CHOVER, J ;
NEY, P ;
WAINGER, S .
ANNALS OF PROBABILITY, 1973, 1 (04) :663-673