AVOIDING THE EXACTNESS OF THE JACOBIAN MATRIX IN ROSENBROCK FORMULAS

被引:9
作者
ZEDAN, H
机构
[1] Computer Science Department, University of York, Heslington, York
关键词
D O I
10.1016/0898-1221(90)90011-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new class of methods, for solving stiff systems, which avoids the exactness of the Jacobian matrix is introduced. The order conditions for methods of order p ≤ 5 are given. The linear stability properties for such methods are analysed; numerical testing are also included. © 1990.
引用
收藏
页码:83 / 89
页数:7
相关论文
共 5 条
[1]   A STUDY OF ROSENBROCK-TYPE METHODS OF HIGH-ORDER [J].
KAPS, P ;
WANNER, G .
NUMERISCHE MATHEMATIK, 1981, 38 (02) :279-298
[2]   GENERALIZED RUNGE-KUTTA METHODS OF ORDER 4 WITH STEPSIZE CONTROL FOR STIFF ORDINARY DIFFERENTIAL-EQUATIONS [J].
KAPS, P ;
RENTROP, P .
NUMERISCHE MATHEMATIK, 1979, 33 (01) :55-68
[3]  
NORSETT SP, 1981, NUMER MATH, V25, P279
[4]  
STEIHAUG T, 1979, MATH COMPUT, V33, P521, DOI 10.1090/S0025-5718-1979-0521273-8
[5]  
1979, NUMERICAL ALGORITHM