GENERAL-THEORY OF FRACTAL PATH-INTEGRALS WITH APPLICATIONS TO MANY-BODY THEORIES AND STATISTICAL PHYSICS

被引:571
作者
SUZUKI, M
机构
[1] Department of Physics, Faculty of Science, University of Tokyo, Bunkyo-Ku, Hongo
关键词
D O I
10.1063/1.529425
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A general scheme of fractal decomposition of exponential operators is presented in any order m. Namely, exp[x(A + B)] = S(m)(x) + O(x(m + 1)) for any positive integer m, where S(m)(x) = e(t1A) e(t2B) e(t3A) e(t4B)...e(tMA) with finite M depending on m. A general recursive scheme of construction of {t(j)} is given explicitly. It is proven that some of {t(j)} should be negative for m greater-than-or-equal-to 3 and for any finite M (nonexistence theorem of positive decomposition). General systematic decomposition criterions based on a new type of time-ordering are also formulated. The decomposition exp[x(A + B)] = [S(m)(x/n)]n + O(x(m + 1)/n(m)) yields a new efficient approach to quantum Monte Carlo simulations.
引用
收藏
页码:400 / 407
页数:8
相关论文
共 19 条
[1]  
BANDRAUK AD, 1989, COMMUNICATION
[2]  
Feynman R. P., 1964, QUANTUM MECH PATH IN
[3]   NUMERICAL-STUDIES ON THE HUBBARD-MODEL AND THE T-J MODEL IN 1-DIMENSIONAL AND 2-DIMENSIONS [J].
IMADA, M ;
HATSUGAI, Y .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1989, 58 (10) :3752-3780
[4]   GENERALIZED CUMULANT EXPANSION METHOD [J].
KUBO, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1962, 17 (07) :1100-&
[5]  
KUROKI K, 1990, THESIS U TOKYO DEP P
[6]  
Mandelbrot B. B, 1982, FRACTAL GEOMETRY NAT, V1, P170
[7]  
Sorella S., 1988, International Journal of Modern Physics B, V2, P993, DOI 10.1142/S0217979288000822
[8]   A NOVEL TECHNIQUE FOR THE SIMULATION OF INTERACTING FERMION SYSTEMS [J].
SORELLA, S ;
BARONI, S ;
CAR, R ;
PARRINELLO, M .
EUROPHYSICS LETTERS, 1989, 8 (07) :663-668
[9]   AUXILIARY FIELD MONTE-CARLO FOR QUANTUM MANY-BODY GROUND-STATES [J].
SUGIYAMA, G ;
KOONIN, SE .
ANNALS OF PHYSICS, 1986, 168 (01) :1-26