OPTIMAL SUPERPRIMITIVITY TESTING FOR STRINGS

被引:73
作者
APOSTOLICO, A
FARACH, M
ILIOPOULOS, CS
机构
[1] UNIV LAQUILA,DIPARTIMENTO MATEMAT PURA & APPL,I-67100 LAQUILA,ITALY
[2] UNIV MARYLAND,DEPT COMP SCI,COLLEGE PK,MD 20742
[3] UNIV LONDON ROYAL HOLLOWAY & BEDFORD NEW COLL,DEPT COMP SCI,EGHAM TW20 0EX,SURREY,ENGLAND
基金
美国国家科学基金会;
关键词
COMBINATORIAL PROBLEMS; DESIGN OF ALGORITHMS; ANALYSIS OF ALGORITHMS; ALGORITHMS ON WORDS; SUPERPRIMITIVE STRINGS; PERIOD OF A STRING; QUASIPERIOD OF A STRING;
D O I
10.1016/0020-0190(91)90056-N
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A string w covers another string z if every position of z is within some occurrence of w in z. Clearly, every string is covered by itself. A string that is covered only by itself is superprimitive. We show that the property of being superprimitive is testable on a string of n symbols in O(n) time and space.
引用
收藏
页码:17 / 20
页数:4
相关论文
共 5 条
[1]   OPTIMAL OFF-LINE DETECTION OF REPETITIONS IN A STRING [J].
APOSTOLICO, A ;
PREPARATA, FP .
THEORETICAL COMPUTER SCIENCE, 1983, 22 (03) :297-315
[2]  
APOSTOLICO A, 1990, 906 FIB REP
[3]  
Knuth D. E., 1977, SIAM Journal on Computing, V6, P323, DOI 10.1137/0206024
[4]  
Lothaire M., 1983, COMBINATORICS WORDS
[5]  
Passman DS., 1962, MICH MATH J, V9, P375, DOI [10.1307/mmj/1028998773, DOI 10.1307/MMJ/1028998773]