IMPROVED UPPER-BOUNDS FOR PROBABILITIES OF UNIFORM DEVIATIONS

被引:7
作者
LUGOSI, G [1 ]
机构
[1] TECH UNIV BUDAPEST,FAC ELECT ENGN,DEPT MATH & COMP SCI,BUDAPEST,HUNGARY
关键词
UNIFORM DEVIATIONS; VAPNIK-CHERVONENKIS INEQUALITY; EMPIRICAL PROCESSES; CONCEPT LEARNING;
D O I
10.1016/0167-7152(94)00207-O
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We obtain Vapnik-Chervonenkis type upper bounds for the uniform deviation of probabilities from their expectations. The bounds sharpen previously known probability inequalities.
引用
收藏
页码:71 / 77
页数:7
相关论文
共 12 条
[1]  
ALEXANDER K, 1984, ANN PROBAB, V4, P1041
[2]  
Bernstein S., 1946, THEORY PROBABILITIES
[3]   LEARNABILITY AND THE VAPNIK-CHERVONENKIS DIMENSION [J].
BLUMER, A ;
EHRENFEUCHT, A ;
HAUSSLER, D ;
WARMUTH, MK .
JOURNAL OF THE ACM, 1989, 36 (04) :929-965
[4]   BOUNDS FOR THE UNIFORM DEVIATION OF EMPIRICAL MEASURES [J].
DEVROYE, L .
JOURNAL OF MULTIVARIATE ANALYSIS, 1982, 12 (01) :72-79
[5]  
DEVROYE L, 1976, 183 U TEX EL RES CTR
[6]   CENTRAL LIMIT-THEOREMS FOR EMPIRICAL MEASURES [J].
DUDLEY, RM .
ANNALS OF PROBABILITY, 1978, 6 (06) :899-929
[7]  
HAUSSLER D, 1991, IN PRESS J COMBIN TH
[9]  
Sauer N., 1972, J COMB THEORY A, V13, P145, DOI [10.1016/0097-3165(72)90019-2, DOI 10.1016/0097-3165(72)90019-2]
[10]   SHARPER BOUNDS FOR GAUSSIAN AND EMPIRICAL PROCESSES [J].
TALAGRAND, M .
ANNALS OF PROBABILITY, 1994, 22 (01) :28-76